Nowadays,with the advent of the age of Web 2.0,several social recommendation methods that use social network information have been proposed and achieved distinct developments.However,the most critical challenges for ...Nowadays,with the advent of the age of Web 2.0,several social recommendation methods that use social network information have been proposed and achieved distinct developments.However,the most critical challenges for the existing majority of these methods are:(1)They tend to utilize only the available social relation between users and deal just with the cold-start user issue.(2)Besides,these methods are suffering from the lack of exploitation of content information such as social tagging,which can provide various sources to extract the item information to overcome the cold-start item and improve the recommendation quality.In this paper,we investigated the efficiency of data fusion by integrating multi-source of information.First,two essential factors,user-side information,and item-side information,are identified.Second,we developed a novel social recommendation model called Two-Sided Regularization(TSR),which is based on the probabilistic matrix factorization method.Finally,the effective quantum-based similarity method is adapted to measure the similarity between users and between items into the proposed model.Experimental results on the real dataset show that our proposed model TSR addresses both of cold-start user and item issues and outperforms state-ofthe-art recommendation methods.These results indicate the importance of incorporating various sources of information in the recommendation process.展开更多
文摘Nowadays,with the advent of the age of Web 2.0,several social recommendation methods that use social network information have been proposed and achieved distinct developments.However,the most critical challenges for the existing majority of these methods are:(1)They tend to utilize only the available social relation between users and deal just with the cold-start user issue.(2)Besides,these methods are suffering from the lack of exploitation of content information such as social tagging,which can provide various sources to extract the item information to overcome the cold-start item and improve the recommendation quality.In this paper,we investigated the efficiency of data fusion by integrating multi-source of information.First,two essential factors,user-side information,and item-side information,are identified.Second,we developed a novel social recommendation model called Two-Sided Regularization(TSR),which is based on the probabilistic matrix factorization method.Finally,the effective quantum-based similarity method is adapted to measure the similarity between users and between items into the proposed model.Experimental results on the real dataset show that our proposed model TSR addresses both of cold-start user and item issues and outperforms state-ofthe-art recommendation methods.These results indicate the importance of incorporating various sources of information in the recommendation process.