We study a spectrum sharing problem where multiple systems coexist and interfere with each other. First, an analysis is proposed for distributed spectrum sharing based on Prisoners' Dilemma (PD) in Cognitive Radio...We study a spectrum sharing problem where multiple systems coexist and interfere with each other. First, an analysis is proposed for distributed spectrum sharing based on Prisoners' Dilemma (PD) in Cognitive Radios (CRs). In one-shot game, selfish and rational CRs greedily full spread their own spectrum space in order to maximize their own rates, which leads to Nash Equilibrium (N.E.). But with long term interaction, i.e., Iterated Prisoner's Dilemma (IPD), CRs can come to cooperate and acquire the social optimal point by using different evolutionary strategies such as Tit For Tat (TFT), Generous TFT (GTFT), etc. Also we compare the performances of the different evolutionary strategies in noise-free and noisy environments for two-player games. Finally, N-player IPD (N-IPD) is simulated to verify our conclusions that TFT is a good strategy for spectrum sharing in CRs.展开更多
Among complex network models,the hierarchical network model is the one most close to such real networks as world trade web,metabolic network,WWW,actor network,and so on.It has not only the property of power-law degree...Among complex network models,the hierarchical network model is the one most close to such real networks as world trade web,metabolic network,WWW,actor network,and so on.It has not only the property of power-law degree distribution,but also the scaling clustering coefficient property which Barabási-Albert(BA)model does not have.BA model is a model of network growth based on growth and preferential attachment,showing the scale-free degree distribution property.In this paper,we study the evolution of cooperation on a hierarchical network model,adopting the prisoner's dilemma(PD)game and snowdrift game(SG)as metaphors of the interplay between connected nodes.BA model provides a unifying framework for the emergence of cooperation.But interestingly,we found that on hierarchical model,there is no sign of cooperation for PD game,while the fre-quency of cooperation decreases as the common benefit decreases for SG.By comparing the scaling clustering coefficient prop-erties of the hierarchical network model with that of BA model,we found that the former amplifies the effect of hubs.Considering different performances of PD game and SG on complex network,we also found that common benefit leads to cooperation in the evolution.Thus our study may shed light on the emergence of cooperation in both natural and social environments.展开更多
As one of the major contributions of biology to competitive decision making, evolutionary game theory provides a useful tool for studying the evolution of cooperation. To achieve the optimal solution for unmanned aeri...As one of the major contributions of biology to competitive decision making, evolutionary game theory provides a useful tool for studying the evolution of cooperation. To achieve the optimal solution for unmanned aerial vehicles (UAVs) that are car- rying out a sensing task, this paper presents a Markov decision evolutionary game (MDEG) based learning algorithm. Each in- dividual in the algorithm follows a Markov decision strategy to maximize its payoff against the well known Tit-for-Tat strate- gy. Simulation results demonstrate that the MDEG theory based approach effectively improves the collective payoff of the roam. The proposed algorithm can not only obtain the best action sequence but also a sub-optimal Markov policy that is inde- pendent of the game duration. Furthermore, the paper also studies the emergence of cooperation in the evolution of self-regarded UAVs. The results show that it is the adaptive ability of the MDEG based approach as well as the perfect balance between revenge and forgiveness of the Tit-for-Tat strategy that the emergence of cooperation should be attributed to.展开更多
基金Supported by the "863" Program (No.2009AA01Z241)the National Natural Science Foundation of China (No.60772062)+2 种基金Key Scientific Research Project of Office of Education in Jiangsu Province (No.06KJA51001)Scientific Research Project of Office of Education in Jiangsu Province (No.8KJB510015)Startup Funding (No.NY208048)
文摘We study a spectrum sharing problem where multiple systems coexist and interfere with each other. First, an analysis is proposed for distributed spectrum sharing based on Prisoners' Dilemma (PD) in Cognitive Radios (CRs). In one-shot game, selfish and rational CRs greedily full spread their own spectrum space in order to maximize their own rates, which leads to Nash Equilibrium (N.E.). But with long term interaction, i.e., Iterated Prisoner's Dilemma (IPD), CRs can come to cooperate and acquire the social optimal point by using different evolutionary strategies such as Tit For Tat (TFT), Generous TFT (GTFT), etc. Also we compare the performances of the different evolutionary strategies in noise-free and noisy environments for two-player games. Finally, N-player IPD (N-IPD) is simulated to verify our conclusions that TFT is a good strategy for spectrum sharing in CRs.
基金Project supported by the Natural Science Foundation of ZhejiangProvince, China (No. Y105697)the Ningbo Natural ScienceFoundation,China (No. 2005A610004)
文摘Among complex network models,the hierarchical network model is the one most close to such real networks as world trade web,metabolic network,WWW,actor network,and so on.It has not only the property of power-law degree distribution,but also the scaling clustering coefficient property which Barabási-Albert(BA)model does not have.BA model is a model of network growth based on growth and preferential attachment,showing the scale-free degree distribution property.In this paper,we study the evolution of cooperation on a hierarchical network model,adopting the prisoner's dilemma(PD)game and snowdrift game(SG)as metaphors of the interplay between connected nodes.BA model provides a unifying framework for the emergence of cooperation.But interestingly,we found that on hierarchical model,there is no sign of cooperation for PD game,while the fre-quency of cooperation decreases as the common benefit decreases for SG.By comparing the scaling clustering coefficient prop-erties of the hierarchical network model with that of BA model,we found that the former amplifies the effect of hubs.Considering different performances of PD game and SG on complex network,we also found that common benefit leads to cooperation in the evolution.Thus our study may shed light on the emergence of cooperation in both natural and social environments.
基金supported by the National Natural Science Foundation of China(Grant Nos.61425008,61333004 and 61273054)Top-Notch Young Talents Program of China,and Aeronautical Foundation of China(Grant No.20135851042)
文摘As one of the major contributions of biology to competitive decision making, evolutionary game theory provides a useful tool for studying the evolution of cooperation. To achieve the optimal solution for unmanned aerial vehicles (UAVs) that are car- rying out a sensing task, this paper presents a Markov decision evolutionary game (MDEG) based learning algorithm. Each in- dividual in the algorithm follows a Markov decision strategy to maximize its payoff against the well known Tit-for-Tat strate- gy. Simulation results demonstrate that the MDEG theory based approach effectively improves the collective payoff of the roam. The proposed algorithm can not only obtain the best action sequence but also a sub-optimal Markov policy that is inde- pendent of the game duration. Furthermore, the paper also studies the emergence of cooperation in the evolution of self-regarded UAVs. The results show that it is the adaptive ability of the MDEG based approach as well as the perfect balance between revenge and forgiveness of the Tit-for-Tat strategy that the emergence of cooperation should be attributed to.