How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linea...How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM).展开更多
Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate o...Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.展开更多
In this paper, the Galerkin projection method is used for solving the semi Sylvester equation. Firstly the semi Sylvester equation is reduced to the multiple linear systems. To apply the Galerkin projection method, so...In this paper, the Galerkin projection method is used for solving the semi Sylvester equation. Firstly the semi Sylvester equation is reduced to the multiple linear systems. To apply the Galerkin projection method, some propositions are presented. The presented scheme is compared with the L-GL-LSQR algorithm in point of view CPU-time and iteration number. Finally, some numerical experiments are presented to show that the efficiency of the new scheme.展开更多
A robust self-calibration method is presented, which can efficiently discard the outliers based on a Weighted Iteration Method (WIM). The method is an iterative process in which the projective reconstruction is obtain...A robust self-calibration method is presented, which can efficiently discard the outliers based on a Weighted Iteration Method (WIM). The method is an iterative process in which the projective reconstruction is obtained based on the weights of all the points, whereas the weights are defined in inverse proportion to the re- ciprocal of the re-projective errors. The weights of outliers trend to zero after several iterations, and the accu- rate projective reconstruction is determined. The location of the absolute conic and the camera intrinsic pa- rameters are obtained after the projective reconstruction. The theory and experiments with both simulate and real data demonstrate that the proposed method is very efficient and robust.展开更多
If a spatial-domain function has a finite support,its Fourier transform is an entire function.The Taylor series expansion of an entire function converges at every finite point in the complex plane.The analytic continu...If a spatial-domain function has a finite support,its Fourier transform is an entire function.The Taylor series expansion of an entire function converges at every finite point in the complex plane.The analytic continuation theory suggests that a finite-sized object can be uniquely determined by its frequency components in a very small neighborhood.Trying to obtain such an exact Taylor expansion is difficult.This paper proposes an iterative algorithm to extend the measured frequency components to unmeasured regions.Computer simulations show that the proposed algorithm converges very slowly,indicating that the problem is too ill-posed to be practically solvable using available methods.展开更多
In this paper, a new iterative solution method is proposed for solving multiple linear systems A(i)x(i)=b(i), for 1≤ i ≤ s, where the coefficient matrices A(i) and the right-hand sides b(i) are arbitrary in general....In this paper, a new iterative solution method is proposed for solving multiple linear systems A(i)x(i)=b(i), for 1≤ i ≤ s, where the coefficient matrices A(i) and the right-hand sides b(i) are arbitrary in general. The proposed method is based on the global least squares (GL-LSQR) method. A linear operator is defined to connect all the linear systems together. To approximate all numerical solutions of the multiple linear systems simultaneously, the GL-LSQR method is applied for the operator and the approximate solutions are obtained recursively. The presented method is compared with the well-known LSQR method. Finally, numerical experiments on test matrices are presented to show the efficiency of the new method.展开更多
In this paper, we introduce some new classes of the totally quasi-G-asymptotically nonexpansive mappings and the totally quasi-G-asymptotically nonexpansive semigroups. Then, with the generalized f-projection operator...In this paper, we introduce some new classes of the totally quasi-G-asymptotically nonexpansive mappings and the totally quasi-G-asymptotically nonexpansive semigroups. Then, with the generalized f-projection operator, we prove some strong convergence theorems of a new modified Halpern type hybrid iterative algorithm for the totally quasi-G-asymptotically nonexpansive semigroups in Banach space. The results presented in this paper extend and improve some corresponding ones by many others.展开更多
Traditional direction of arrival(DOA)estimation methods based on sparse reconstruction commonly use convex or smooth functions to approximate non-convex and non-smooth sparse representation problems.This approach ofte...Traditional direction of arrival(DOA)estimation methods based on sparse reconstruction commonly use convex or smooth functions to approximate non-convex and non-smooth sparse representation problems.This approach often introduces errors into the sparse representation model,necessitating the development of improved DOA estimation algorithms.Moreover,conventional DOA estimation methods typically assume that the signal coincides with a predetermined grid.However,in reality,this assumption often does not hold true.The likelihood of a signal not aligning precisely with the predefined grid is high,resulting in potential grid mismatch issues for the algorithm.To address the challenges associated with grid mismatch and errors in sparse representation models,this article proposes a novel high-performance off-grid DOA estimation approach based on iterative proximal projection(IPP).In the proposed method,we employ an alternating optimization strategy to jointly estimate sparse signals and grid offset parameters.A proximal function optimization model is utilized to address non-convex and non-smooth sparse representation problems in DOA estimation.Subsequently,we leverage the smoothly clipped absolute deviation penalty(SCAD)function to compute the proximal operator for solving the model.Simulation and sea trial experiments have validated the superiority of the proposed method in terms of higher resolution and more accurate DOA estimation performance when compared to both traditional sparse reconstruction methods and advanced off-grid techniques.展开更多
基金support provided by the Ministry of Science and Technology,Taiwan,ROC under Contract No.MOST 110-2221-E-019-044.
文摘How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM).
文摘Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.
文摘In this paper, the Galerkin projection method is used for solving the semi Sylvester equation. Firstly the semi Sylvester equation is reduced to the multiple linear systems. To apply the Galerkin projection method, some propositions are presented. The presented scheme is compared with the L-GL-LSQR algorithm in point of view CPU-time and iteration number. Finally, some numerical experiments are presented to show that the efficiency of the new scheme.
基金Supported by the National Natural Science Foundation of China (No.60473119 and No.60372043).
文摘A robust self-calibration method is presented, which can efficiently discard the outliers based on a Weighted Iteration Method (WIM). The method is an iterative process in which the projective reconstruction is obtained based on the weights of all the points, whereas the weights are defined in inverse proportion to the re- ciprocal of the re-projective errors. The weights of outliers trend to zero after several iterations, and the accu- rate projective reconstruction is determined. The location of the absolute conic and the camera intrinsic pa- rameters are obtained after the projective reconstruction. The theory and experiments with both simulate and real data demonstrate that the proposed method is very efficient and robust.
基金This research is partially supported by NIH,No.R15EB024283.
文摘If a spatial-domain function has a finite support,its Fourier transform is an entire function.The Taylor series expansion of an entire function converges at every finite point in the complex plane.The analytic continuation theory suggests that a finite-sized object can be uniquely determined by its frequency components in a very small neighborhood.Trying to obtain such an exact Taylor expansion is difficult.This paper proposes an iterative algorithm to extend the measured frequency components to unmeasured regions.Computer simulations show that the proposed algorithm converges very slowly,indicating that the problem is too ill-posed to be practically solvable using available methods.
文摘In this paper, a new iterative solution method is proposed for solving multiple linear systems A(i)x(i)=b(i), for 1≤ i ≤ s, where the coefficient matrices A(i) and the right-hand sides b(i) are arbitrary in general. The proposed method is based on the global least squares (GL-LSQR) method. A linear operator is defined to connect all the linear systems together. To approximate all numerical solutions of the multiple linear systems simultaneously, the GL-LSQR method is applied for the operator and the approximate solutions are obtained recursively. The presented method is compared with the well-known LSQR method. Finally, numerical experiments on test matrices are presented to show the efficiency of the new method.
文摘In this paper, we introduce some new classes of the totally quasi-G-asymptotically nonexpansive mappings and the totally quasi-G-asymptotically nonexpansive semigroups. Then, with the generalized f-projection operator, we prove some strong convergence theorems of a new modified Halpern type hybrid iterative algorithm for the totally quasi-G-asymptotically nonexpansive semigroups in Banach space. The results presented in this paper extend and improve some corresponding ones by many others.
基金supported by the National Science Foundation for Distinguished Young Scholars(Grant No.62125104)the National Natural Science Foundation of China(Grant No.52071111).
文摘Traditional direction of arrival(DOA)estimation methods based on sparse reconstruction commonly use convex or smooth functions to approximate non-convex and non-smooth sparse representation problems.This approach often introduces errors into the sparse representation model,necessitating the development of improved DOA estimation algorithms.Moreover,conventional DOA estimation methods typically assume that the signal coincides with a predetermined grid.However,in reality,this assumption often does not hold true.The likelihood of a signal not aligning precisely with the predefined grid is high,resulting in potential grid mismatch issues for the algorithm.To address the challenges associated with grid mismatch and errors in sparse representation models,this article proposes a novel high-performance off-grid DOA estimation approach based on iterative proximal projection(IPP).In the proposed method,we employ an alternating optimization strategy to jointly estimate sparse signals and grid offset parameters.A proximal function optimization model is utilized to address non-convex and non-smooth sparse representation problems in DOA estimation.Subsequently,we leverage the smoothly clipped absolute deviation penalty(SCAD)function to compute the proximal operator for solving the model.Simulation and sea trial experiments have validated the superiority of the proposed method in terms of higher resolution and more accurate DOA estimation performance when compared to both traditional sparse reconstruction methods and advanced off-grid techniques.