期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Improvement of iterative closest point with edges of projected image
1
作者 Chen WANG 《Virtual Reality & Intelligent Hardware》 2023年第3期279-291,共13页
Background There are many regularly shaped objects in artificial environments.It is difficult to distinguish the poses of these objects when only geometric information is used.With the development of sensor technologi... Background There are many regularly shaped objects in artificial environments.It is difficult to distinguish the poses of these objects when only geometric information is used.With the development of sensor technologies,inclusion of other information can be used to solve this problem.Methods We propose an algorithm to register point clouds by integrating color information.The key idea of the algorithm is to jointly optimize the dense and edge terms.The dense term was built in a manner similar to that of the iterative closest point algorithm.To build the edge term,we extracted the edges of the images obtained by projecting point clouds.The edge term prevents the point clouds from sliding during registration.We used this loosely coupled method to fuse geometric and color information.Results The results of the experiments showed that the edge image approach improves precision,and the algorithm is robust. 展开更多
关键词 Point cloud REGISTRATION iterative closest point
下载PDF
Non-cooperative target pose estimation based on improved iterative closest point algorithm 被引量:1
2
作者 ZHU Zijian XIANG Wenhao +3 位作者 HUO Ju YANG Ming ZHANG Guiyang WEI Liang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第1期1-10,共10页
For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes... For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes a new iterative closest point(ICP)algorithm combined with distributed weights to intensify the dependability and robustness of the non-cooperative target localisation.As interference points in space have not yet been extensively studied,we classify them into two broad categories,far interference points and near interference points.For the former,the statistical outlier elimination algorithm is employed.For the latter,the Gaussian distributed weights,simultaneously valuing with the variation of the Euclidean distance from each point to the centroid,are commingled to the traditional ICP algorithm.In each iteration,the weight matrix W in connection with the overall localisation is obtained,and the singular value decomposition is adopted to accomplish high-precision estimation of the target pose.Finally,the experiments are implemented by shooting the satellite model and setting the position of interference points.The outcomes suggest that the proposed algorithm can effectively suppress interference points and enhance the accuracy of non-cooperative target pose estimation.When the interference point number reaches about 700,the average error of angle is superior to 0.88°. 展开更多
关键词 non-cooperative target pose estimation iterative closest point(ICP) Gaussian weight
下载PDF
Natural forest ALS-TLS point cloud data registration without control points 被引量:1
3
作者 Jianpeng Zhang Jinliang Wang +3 位作者 Feng Cheng Weifeng Ma Qianwei Liu Guangjie Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第3期809-820,共12页
Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information belo... Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information below the forest canopy due to the occlusion of trees in natural forests.In contrast,TLS is unable to gather fi ne structure information about the upper canopy.To address the problem of incomplete acquisition of natural forest point cloud data by ALS and TLS on a single platform,this study proposes data registration without control points.The ALS and TLS original data were cropped according to sample plot size,and the ALS point cloud data was converted into relative coordinates with the center of the cropped data as the origin.The same feature point pairs of the ALS and TLS point cloud data were then selected to register the point cloud data.The initial registered point cloud data was fi nely and optimally registered via the iterative closest point(ICP)algorithm.The results show that the proposed method achieved highprecision registration of ALS and TLS point cloud data from two natural forest plots of Pinus yunnanensis Franch.and Picea asperata Mast.which included diff erent species and environments.An average registration accuracy of 0.06 m and 0.09 m were obtained for P.yunnanensis and P.asperata,respectively. 展开更多
关键词 Airborne laser scanning(ALS) Terrestrial laser scanning(TLS) REGISTRATION Natural forest iterative closest point(ICP)algorithm
下载PDF
Easy to Calibrate:Marker-Less Calibration of Multiview Azure Kinect
4
作者 Sunyoung Bu Suwon Lee 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3083-3096,共14页
Reconstructing a three-dimensional(3D)environment is an indispensable technique to make augmented reality and augmented virtuality feasible.A Kinect device is an efficient tool for reconstructing 3D environments,and u... Reconstructing a three-dimensional(3D)environment is an indispensable technique to make augmented reality and augmented virtuality feasible.A Kinect device is an efficient tool for reconstructing 3D environments,and using multiple Kinect devices enables the enhancement of reconstruction density and expansion of virtual spaces.To employ multiple devices simultaneously,Kinect devices need to be calibrated with respect to each other.There are several schemes available that calibrate 3D images generated frommultiple Kinect devices,including themarker detection method.In this study,we introduce a markerless calibration technique for Azure Kinect devices that avoids the drawbacks of marker detection,which directly affects calibration accuracy;it offers superior userfriendliness,efficiency,and accuracy.Further,we applied a joint tracking algorithm to approximate the calibration.Traditional methods require the information of multiple joints for calibration;however,Azure Kinect,the latest version of Kinect,requires the information of only one joint.The obtained result was further refined using the iterative closest point algorithm.We conducted several experimental tests that confirmed the enhanced efficiency and accuracy of the proposed method for multiple Kinect devices when compared to the conventional markerbased calibration. 展开更多
关键词 Azure Kinect Kinect calibration marker-less calibration 3D reconstruction iterative closest point
下载PDF
A hybrid point cloud alignment method combining particle swarm optimization and iterative closest point method 被引量:2
5
作者 Quan Yu Kesheng Wang 《Advances in Manufacturing》 SCIE CAS 2014年第1期32-38,共7页
3D quality inspection is widely applied in many industrial fields including mould design, automotive and blade manufacturing, etc. A commonly used method is to obtain the point cloud of the inspected object and make a... 3D quality inspection is widely applied in many industrial fields including mould design, automotive and blade manufacturing, etc. A commonly used method is to obtain the point cloud of the inspected object and make a comparison between the point cloud and the corresponding CAD model or template. Thus, it is important to align the point cloud with the template first and foremost. Moreover, for the purpose of automatization of quality inspection, this alignment process is expected to be completed without manual interference. In this paper, we propose to combine the particle swarm optimization (PSO) with iterative closest point (ICP) algorithm to achieve the automated point cloud alignment. The combination of the two algorithms can achieve a balance between the alignment speed and accuracy, and avoid the local optimal caused by bad initial position of the point cloud. 展开更多
关键词 Quality inspection Point cloud alignment Particle swarm optimization (PSO) iterative closest point(ICP)
原文传递
A novel algorithm for SLAM in dynamic environments using landscape theory of aggregation 被引量:1
6
作者 华承昊 窦丽华 +1 位作者 方浩 付浩 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2587-2594,共8页
To tackle the problem of simultaneous localization and mapping(SLAM) in dynamic environments, a novel algorithm using landscape theory of aggregation is presented. By exploiting the coherent explanation how actors for... To tackle the problem of simultaneous localization and mapping(SLAM) in dynamic environments, a novel algorithm using landscape theory of aggregation is presented. By exploiting the coherent explanation how actors form alignments in a game provided by the landscape theory of aggregation, the algorithm is able to explicitly deal with the ever-changing relationship between the static objects and the moving objects without any prior models of the moving objects. The effectiveness of the method has been validated by experiments in two representative dynamic environments: the campus road and the urban road. 展开更多
关键词 mobile robot simultaneous localization and mapping(SLAM) dynamic environment landscape theory of aggregation iterative closest point
下载PDF
Global Fine Registration of Point Cloud in LiDAR SLAM Based on Pose Graph 被引量:11
7
作者 Li YAN Jicheng DAI +2 位作者 Junxiang TAN Hua LIU Changjun CHEN 《Journal of Geodesy and Geoinformation Science》 2020年第2期26-35,共10页
The laser scanning system based on Simultaneous Localization and Mapping(SLAM)technology has the advantages of low cost,high precision and high efficiency.It has drawn wide attention in the field of surveying and mapp... The laser scanning system based on Simultaneous Localization and Mapping(SLAM)technology has the advantages of low cost,high precision and high efficiency.It has drawn wide attention in the field of surveying and mapping in recent years.Although real-time data acquisition can be achieved using SLAM technology,the precision of the data can’t be ensured,and inconsistency exists in the acquired point cloud.In order to improve the precision of the point cloud obtained by this kind of system,this paper presents a hierarchical point cloud global optimization algorithm.Firstly,the“point-to-plane”iterative closest point(ICP)algorithm is used to match the overlapping point clouds to form constraints between the trajectories of the scanning system.Then a pose graph is constructed to optimize the trajectory.Finally,the optimized trajectory is used to refine the point cloud.The computational efficiency is improved by decomposing the optimization process into two levels,i.e.local level and global level.The experimental results show that the RMSE of the distance between the corresponding points in overlapping areas is reduced by about 50%after optimization,and the internal inconsistency is effectively eliminated. 展开更多
关键词 point cloud refine Simultaneous Localization and Mapping global optimization graph optimization iterative closest point
下载PDF
Multi-view ladar data registration in obscure environment
8
作者 Mingbo Zhao Jun He +1 位作者 Wei Qiu Qiang Fu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期606-616,共11页
Multi-view laser radar (ladar) data registration in obscure environments is an important research field of obscured target detection from air to ground. There are few overlap regions of the observational data in dif... Multi-view laser radar (ladar) data registration in obscure environments is an important research field of obscured target detection from air to ground. There are few overlap regions of the observational data in different views because of the occluder, so the multi-view data registration is rather difficult. Through indepth analyses of the typical methods and problems, it is obtained that the sequence registration is more appropriate, but needs to improve the registration accuracy. On this basis, a multi-view data registration algorithm based on aggregating the adjacent frames, which are already registered, is proposed. It increases the overlap region between the pending registration frames by aggregation and further improves the registration accuracy. The experiment results show that the proposed algorithm can effectively register the multi-view ladar data in the obscure environment, and it also has a greater robustness and a higher registration accuracy compared with the sequence registration under the condition of equivalent operating efficiency. 展开更多
关键词 laser radar (ladar) multi-view data registration iterative closest point obscured target point cloud data.
下载PDF
3D face registration based on principal axis analysis and labeled regions orientation
9
作者 Guo Zhe Zhang Yanning Lin Zenggang Liu Yantong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第6期1324-1331,共8页
A novel multi-view 3D face registration method based on principal axis analysis and labeled regions orientation called local orientation registration is proposed.The pre-registration is achieved by transforming the mu... A novel multi-view 3D face registration method based on principal axis analysis and labeled regions orientation called local orientation registration is proposed.The pre-registration is achieved by transforming the multi-pose models to the standard frontal model's reference frame using the principal axis analysis algorithm.Some significant feature regions, such as inner and outer canthus, nose tip vertices, are then located by using geometrical distribution characteristics.These regions are subsequently employed to compute the conversion parameters using the improved iterative closest point algorithm, and the optimal parameters are applied to complete the final registration.Experimental results implemented on the proper database demonstrate that the proposed method significantly outperforms others by achieving 1.249 and 1.910 mean root-mean-square measure with slight and large view variation models, respectively. 展开更多
关键词 local orientation registration principal axis analysis label regions orientation iterative closest point.
下载PDF
Surface registration algorithm for rapid detection of surface thermal deformation of paraboloid antennas
10
作者 马开锋 Huang Guiping +1 位作者 Hu Qingfeng He Peipei 《High Technology Letters》 EI CAS 2018年第3期266-271,共6页
In order to obtain and master the surface thermal deformation of paraboloid antennas,a fast iterative closest point( FICP) algorithm based on design coordinate guidance is proposed,which can satisfy the demands of rap... In order to obtain and master the surface thermal deformation of paraboloid antennas,a fast iterative closest point( FICP) algorithm based on design coordinate guidance is proposed,which can satisfy the demands of rapid detection for surface thermal deformation. Firstly,the basic principle of the ICP algorithm for registration of a free surface is given,and the shortcomings of the ICP algorithm in the registration of surface are analysed,such as its complex computation,long calculation time,low efficiency,and relatively strict initial registration position. Then an improved FICP algorithm based on design coordinate guidance is proposed. Finally,the FICP algorithm is applied to the fast registration test for the surface thermal deformation of a paraboloid antenna. Results indicate that the approach offers better performance with regard to fast surface registration and the algorithm is more simple,efficient,and easily realized in practical engineering application. 展开更多
关键词 paraboloid antenna surface thermal deformation ICP algorithm fast iterative closest point (FICP) algorithm surface registration
下载PDF
Indoor 3D Reconstruction Using Camera, IMU and Ultrasonic Sensors
11
作者 Desire Burume Mulindwa 《Journal of Sensor Technology》 2020年第2期15-30,共16页
The recent advances in sensing and display technologies have been transforming our living environments drastically. In this paper, a new technique is introduced to accurately reconstruct indoor environments in three-d... The recent advances in sensing and display technologies have been transforming our living environments drastically. In this paper, a new technique is introduced to accurately reconstruct indoor environments in three-dimensions using a mobile platform. The system incorporates 4 ultrasonic sensors scanner system, an HD web camera as well as an inertial measurement unit (IMU). The whole platform is mountable on mobile facilities, such as a wheelchair. The proposed mapping approach took advantage of the precision of the 3D point clouds produced by the ultrasonic sensors system despite their scarcity to help build a more definite 3D scene. Using a robust iterative algorithm, it combined the structure from motion generated 3D point clouds with the ultrasonic sensors and IMU generated 3D point clouds to derive a much more precise point cloud using the depth measurements from the ultrasonic sensors. Because of their ability to recognize features of objects in the targeted scene, the ultrasonic generated point clouds performed feature extraction on the consecutive point cloud to ensure a perfect alignment. The range measured by ultrasonic sensors contributed to the depth correction of the generated 3D images (the 3D scenes). Experiments revealed that the system generated not only dense but precise 3D maps of the environments. The results showed that the designed 3D modeling platform is able to help in assistive living environment for self-navigation, obstacle alert, and other driving assisting tasks. 展开更多
关键词 3D Point Cloud Position Estimation iterative closest Point (ICP) Ultrasonic Sensors Distance Measurement 3D Indoor Reconstruction
下载PDF
Multi-View Point Clouds Registration without Feature Extraction for Use in Reverse Engineering of CAD Models
12
作者 Huang Xiaoping,Xiong Youlun School of Mechanical Science and Engineering Huazhong University of Science and Technology, Wuhan 430074, China Reverse Engineering 《Computer Aided Drafting,Design and Manufacturing》 2001年第2期46-52,共7页
For reverse engineering a CAD model, it is necessary to integrate measured points from several views of an object into a common reference frame. Given a rough initial alignment of point cloud in different views with p... For reverse engineering a CAD model, it is necessary to integrate measured points from several views of an object into a common reference frame. Given a rough initial alignment of point cloud in different views with point-normal method, further refinement is achieved by using an improved iterative closest point (ICP) algorithm. Compared with other methods used for mult-view registration, this approach is automatic because no geometric feature, such as line, plane or sphere needs to be extracted from the original point cloud manually. A good initial alignment can be acquired automatically and the registration accuracy and efficiency is proven better than the normal point-point ICP algorithm both experimentally and theoretically. 展开更多
关键词 reverse engineering iterative closest point algorithm registration.
全文增补中
一种基于全等三角形的点云自动配准方法
13
作者 代许松 花向红 +3 位作者 任志忠 陶武勇 赵不钒 李琪琪 《测绘地理信息》 CSCD 2023年第5期55-59,共5页
点云配准是点云数据处理中比较关键的步骤,直接影响处理结果。经典的迭代最近点(iterative closest point,ICP)算法需要目标点云与源点云之间有良好的初始姿态,否则会遇到局部最优等问题。因此,提出了一种基于全等三角形的点云自动配准... 点云配准是点云数据处理中比较关键的步骤,直接影响处理结果。经典的迭代最近点(iterative closest point,ICP)算法需要目标点云与源点云之间有良好的初始姿态,否则会遇到局部最优等问题。因此,提出了一种基于全等三角形的点云自动配准方法。该方法通过边长相等和面积相等来构造全等三角形,找到源点云与目标点云的对应点,建立源点云与目标点云的对应关系和转换参数最优估计,完成粗配准,再结合ICP算法进行精配准,实现点云的自动配准。结果表明,与四点一致集(4-points congruent sets,4PCS)配准算法和ICP算法的结合算法相比,所提算法能有效改善ICP算法对初值依赖的问题,并且配准精度有一定提升。 展开更多
关键词 激光雷达(light detection and ranging LiDAR)点云 全等三角形 点云粗配准 迭代最近点(iterative closest point ICP)算法 点云精配准
原文传递
A Tracking Registration Method for Augmented Reality Based on Multi-modal Template Matching and Point Clouds 被引量:6
14
作者 Peng-Xia Cao Wen-Xin Li Wei-Ping Ma 《International Journal of Automation and computing》 EI CSCD 2021年第2期288-299,共12页
In order to overcome the defects where the surface of the object lacks sufficient texture features and the algorithm cannot meet the real-time requirements of augmented reality,a markerless augmented reality tracking ... In order to overcome the defects where the surface of the object lacks sufficient texture features and the algorithm cannot meet the real-time requirements of augmented reality,a markerless augmented reality tracking registration method based on multimodal template matching and point clouds is proposed.The method first adapts the linear parallel multi-modal LineMod template matching method with scale invariance to identify the texture-less target and obtain the reference image as the key frame that is most similar to the current perspective.Then,we can obtain the initial pose of the camera and solve the problem of re-initialization because of tracking registration interruption.A point cloud-based method is used to calculate the precise pose of the camera in real time.In order to solve the problem that the traditional iterative closest point(ICP)algorithm cannot meet the real-time requirements of the system,Kdtree(k-dimensional tree)is used under the graphics processing unit(GPU)to replace the part of finding the nearest points in the original ICP algorithm to improve the speed of tracking registration.At the same time,the random sample consensus(RANSAC)algorithm is used to remove the error point pairs to improve the accuracy of the algorithm.The results show that the proposed tracking registration method has good real-time performance and robustness. 展开更多
关键词 Augmented reality markerless tracking registration LineMod iterative closest point(ICP)algorithm
原文传递
Underwater map-matching aided inertial navigation system based on multi-geophysical information 被引量:8
15
作者 Zhongliang DENG Yuetao GE +1 位作者 Weiguo GUAN Ke HAN 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2010年第4期496-500,共5页
In order to achieve long-term covert precise navigation for an underwater vehicle,the shortcomings of various underwater navigation methods used are analyzed.Given the low navigation precision of underwater mapmatchin... In order to achieve long-term covert precise navigation for an underwater vehicle,the shortcomings of various underwater navigation methods used are analyzed.Given the low navigation precision of underwater mapmatching aided inertial navigation based on singlegeophysical information,a model of an underwater mapmatching aided inertial navigation system based on multigeophysical information(gravity,topography and geomagnetism)is put forward,and the key technologies of map-matching based on multi-geophysical information are analyzed.Iterative closest contour point(ICCP)mapmatching algorithm and data fusion based on Dempster-Shafer(D-S)evidence theory are applied to navigation simulation.Simulation results show that accumulation of errors with increasing of time and distance are restrained and fusion of multi-map-matching is superior to any single-map-matching,which can effectively determine the best match of underwater vehicle position and improve the accuracy of underwater vehicle navigation. 展开更多
关键词 geophysical information underwater navigation iterative closest contour point(ICCP)algorithm Dempster-Shafer(D-S)evidence theory map-matching
原文传递
A Method for Range Image Registration via Neural Network and ICP Algorithm
16
作者 LI Qingguang,GAO Cen,WU Xianfeng,LI Dehua Institute for Pattern Recognition and Artificial Intelligence,Huazhong University of Science and Technology,Wuhan 430074,Hubei,China 《Wuhan University Journal of Natural Sciences》 CAS 2010年第5期398-402,共5页
In this paper,a new integrated registration algorithm based on neural network and ICP(iterative closest point) algorithm is presented.A coarse registration process is implemented with neural network,and then further... In this paper,a new integrated registration algorithm based on neural network and ICP(iterative closest point) algorithm is presented.A coarse registration process is implemented with neural network,and then further optimized by ICP algorithm.The corresponding point pairs are found according to the target points' curvature and color information.Mahalanobis distance,which reflects the scattering degree of point data,is employed to define the closest distance and the closest points.The results of the experiment show that our algorithm has better feasibility,validity and efficiency than the traditional ICP method. 展开更多
关键词 REGISTRATION range image neural network iterative closest point
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部