The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this prob...The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.展开更多
For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes...For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes a new iterative closest point(ICP)algorithm combined with distributed weights to intensify the dependability and robustness of the non-cooperative target localisation.As interference points in space have not yet been extensively studied,we classify them into two broad categories,far interference points and near interference points.For the former,the statistical outlier elimination algorithm is employed.For the latter,the Gaussian distributed weights,simultaneously valuing with the variation of the Euclidean distance from each point to the centroid,are commingled to the traditional ICP algorithm.In each iteration,the weight matrix W in connection with the overall localisation is obtained,and the singular value decomposition is adopted to accomplish high-precision estimation of the target pose.Finally,the experiments are implemented by shooting the satellite model and setting the position of interference points.The outcomes suggest that the proposed algorithm can effectively suppress interference points and enhance the accuracy of non-cooperative target pose estimation.When the interference point number reaches about 700,the average error of angle is superior to 0.88°.展开更多
Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information belo...Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information below the forest canopy due to the occlusion of trees in natural forests.In contrast,TLS is unable to gather fi ne structure information about the upper canopy.To address the problem of incomplete acquisition of natural forest point cloud data by ALS and TLS on a single platform,this study proposes data registration without control points.The ALS and TLS original data were cropped according to sample plot size,and the ALS point cloud data was converted into relative coordinates with the center of the cropped data as the origin.The same feature point pairs of the ALS and TLS point cloud data were then selected to register the point cloud data.The initial registered point cloud data was fi nely and optimally registered via the iterative closest point(ICP)algorithm.The results show that the proposed method achieved highprecision registration of ALS and TLS point cloud data from two natural forest plots of Pinus yunnanensis Franch.and Picea asperata Mast.which included diff erent species and environments.An average registration accuracy of 0.06 m and 0.09 m were obtained for P.yunnanensis and P.asperata,respectively.展开更多
激光点云常规匹配算法是迭代最近点(Iterative Closest Point, ICP)算法,但其收敛速度慢、鲁棒性差,因此,提出一种融合多种优化算法的激光点云高效ICP配准方法。首先对点云体素滤波降采样,通过ISS算子提取关键点,采用快速点特征直方图(F...激光点云常规匹配算法是迭代最近点(Iterative Closest Point, ICP)算法,但其收敛速度慢、鲁棒性差,因此,提出一种融合多种优化算法的激光点云高效ICP配准方法。首先对点云体素滤波降采样,通过ISS算子提取关键点,采用快速点特征直方图(Fast Point Feature Histograms, FPFH)提取关键点特征,嵌入多核多线程并行处理模式(OpenMP)提高特征提取速度;然后基于提取的FPFH特征,使用采样一致性初始配准算法(Sample Consensus Initial Alignment, SAC-IA)进行相似特征点粗配准,获取点云集间的初始旋转平移变换矩阵;最后采用ICP算法进行精配准,同时采用最优节点优先(Best Bin First, BBF)优化K-D tree近邻搜索法来加速对应关系点对的搜索,并设定动态阈值消除错误对应点对,提高配准快速性和准确性。对两个实例的配准点云进行了实验验证,结果表明,提出的优化配准算法具有明显速度优势和精度优势。展开更多
基金supported in part by the National Natural Science Foundation of China(61627811,61573274,61673126,U1701261)
文摘The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.
基金supported by the National Natural Science Foundation of China(51875535)the Natural Science Foundation for Young Scientists of Shanxi Province(201901D211242201701D221017)。
文摘For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes a new iterative closest point(ICP)algorithm combined with distributed weights to intensify the dependability and robustness of the non-cooperative target localisation.As interference points in space have not yet been extensively studied,we classify them into two broad categories,far interference points and near interference points.For the former,the statistical outlier elimination algorithm is employed.For the latter,the Gaussian distributed weights,simultaneously valuing with the variation of the Euclidean distance from each point to the centroid,are commingled to the traditional ICP algorithm.In each iteration,the weight matrix W in connection with the overall localisation is obtained,and the singular value decomposition is adopted to accomplish high-precision estimation of the target pose.Finally,the experiments are implemented by shooting the satellite model and setting the position of interference points.The outcomes suggest that the proposed algorithm can effectively suppress interference points and enhance the accuracy of non-cooperative target pose estimation.When the interference point number reaches about 700,the average error of angle is superior to 0.88°.
基金supported by the National Natural Science Foundation of China,Grant Number 41961060by the Program for Innovative Research Team (in Science and Technology) in the University of Yunnan Province,Grant Number IRTSTYN+1 种基金by the Scientific Research Fund Project of the Education Department of Yunnan Province,Grant Numbers 2020J0256 and 2021J0438by the Postgraduate Scientific Research and Innovation Fund Project of Yunnan Normal University,Grant Number YJSJJ21-A08
文摘Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information below the forest canopy due to the occlusion of trees in natural forests.In contrast,TLS is unable to gather fi ne structure information about the upper canopy.To address the problem of incomplete acquisition of natural forest point cloud data by ALS and TLS on a single platform,this study proposes data registration without control points.The ALS and TLS original data were cropped according to sample plot size,and the ALS point cloud data was converted into relative coordinates with the center of the cropped data as the origin.The same feature point pairs of the ALS and TLS point cloud data were then selected to register the point cloud data.The initial registered point cloud data was fi nely and optimally registered via the iterative closest point(ICP)algorithm.The results show that the proposed method achieved highprecision registration of ALS and TLS point cloud data from two natural forest plots of Pinus yunnanensis Franch.and Picea asperata Mast.which included diff erent species and environments.An average registration accuracy of 0.06 m and 0.09 m were obtained for P.yunnanensis and P.asperata,respectively.