期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Giant Volume Magnetostriction Caused by Itinerant Electron Metamagnetic Transition and Pronounced Invar Effects in La(Fe_xSi_(1-x))_(13) Compounds 被引量:1
1
作者 K.Fukamichi and A.Fujita (Department of Materials Science, Graduate School of Engineering, Tohoku University, Aoba-yama 02, Sendai 980-8579, Japan) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第2期167-171,共5页
A first-order itinerant electron metamagnetic (IEM) transition above the Curie temperature Tc for ferromagnetic La(Fe_xSi_1-x)13 compounds has been confirmed by applying magnetic field. The volume change just above T_... A first-order itinerant electron metamagnetic (IEM) transition above the Curie temperature Tc for ferromagnetic La(Fe_xSi_1-x)13 compounds has been confirmed by applying magnetic field. The volume change just above T_C for x=0.88 is huge of about 1.5%, which is caused by a large magnetic moment induced by the IEM transition. These compounds have a possibility for practical applications as giant magnetostrictive materials. Pronounced Invar effects bring about a negative thermal expansion below TC, closely correlated with the negative mode-mode coupling among spin fluctuations. 展开更多
关键词 COMPOUNDS Fe_xSi Giant Volume Magnetostriction Caused by itinerant Electron Metamagnetic Transition and Pronounced Invar Effects in La
下载PDF
Magnetic and Transport Properties of La_(0.5-x)Nd_xBa_(0.5) CoO_3 Compounds 被引量:1
2
作者 张汝贞 刘宜华 +3 位作者 王成建 黄宝歆 季刚 梅良模 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第5期558-562,共5页
Substituting effects of Nd for La in La 0.5 Ba 0.5 CoO 3 compounds were studied systematically. The results show that Nd doping does not change the itinerant properties of the Co3d electrons. The molecular ma... Substituting effects of Nd for La in La 0.5 Ba 0.5 CoO 3 compounds were studied systematically. The results show that Nd doping does not change the itinerant properties of the Co3d electrons. The molecular magnetic moment of the materials decreases monotonically with increasing Nd dopant. When Nd content x ≥0.45, a magnetic phase separation appears in the materials. When x ≤0.45, the Curie temperature decreases monotonically with increasing Nd dopant. This is due to the size effects of the rare earth ions. The electric resistance measurements show that in the studied temperature range, the conduction of the materials belongs to the thermo diffusion conduction below the Curie temperature, while it belongs to the variable range hopping conduction of polarons over the Curie temperature. 展开更多
关键词 metal materials La 0.5- x Nd x Ba 0.5 CoO 3 compounds size effect itinerant electrons charge transfer rare earths
下载PDF
Magnetic properties and magnetic entropy changes of La1-xPrxFe11.5Si1.5 compounds with 0 ≤ x ≤ 0.5 被引量:4
3
作者 沈俊 高博 +4 位作者 闫丽琴 李养贤 张宏伟 胡凤霞 孙继荣 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第12期3848-3852,共5页
Magnetic properties and magnetic entropy changes in LaFe11.5Si1.5 have been investigated by partially substituting Pr by La. It is found that La1-xPrxFe11.5Si1.5 compounds remain cubic NaZn13-type structures even when... Magnetic properties and magnetic entropy changes in LaFe11.5Si1.5 have been investigated by partially substituting Pr by La. It is found that La1-xPrxFe11.5Si1.5 compounds remain cubic NaZn13-type structures even when the Pr content is increased to 0.5, i.e. x = 0.5. Substitution of Pr for La leads to a reduction in both the crystal constant and the Curie temperature. A stepwise magnetic behaviour in the isothermal magnetization curves is observed, indicating that the characteristic of the itinerant electron metamagnetic (IEM) transition above Tc becomes more prominent with the Pr content increasing. As a result, the magnetic entropy change is remarkably enhanced from 23.0 to 29.4 J/kg·K as the field changes from 0 to 5T, with the value of x increasing from 0 to 0.5. It is more attractive that the magnetic entropy changes for all samples are shaped into high plateaus in a wide range of temperature, which is highly favourable for Ericsson-type magnetic refrigeration. 展开更多
关键词 La1-xPrxFe11.5Si1.5 compounds magnetic entropy change magnetic property itinerant electron metamagnetic transition
下载PDF
Magnetic Phase Transition and Magnetic Entropy Change in La_(0.8)Pr_(0.2)Fe_(11.4)Si_(1.6) Compound
4
作者 李晓伟 李国栋 +1 位作者 徐超 王立刚 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期130-134,共5页
The magnetic properties and the phase transformation of the partial substitution of Pr for La in LaFe11.4Si1.6 have been investigated by the means of X-ray diffraction (XRD) and vibrating sample magnetic (VSM). The re... The magnetic properties and the phase transformation of the partial substitution of Pr for La in LaFe11.4Si1.6 have been investigated by the means of X-ray diffraction (XRD) and vibrating sample magnetic (VSM). The results indicated that the single phase NaZn13-type cubic structure is stabilized for the compound La0.8Pr0.2Fe11.4Si1.6 and large values of the isothermal magnetic entropy change SM around the curie temperature TC~194 K in relative low magnetic fields. The maximum value︱SM︱max~37.07 J/kg·K-1 under a field of 1.5 T. Such large MCEs are attributed to the sharp change of the magnetization at the Curie temperature, the field-induced IEM transition and a strong temperature dependence of the critical field BC. 展开更多
关键词 NaZn13-type intermetallic compound itinerant electron magnetic (IEM) transition magnetic entropy change
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部