The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has b...The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.展开更多
A jack-up platform, with its particular structure, showed obvious dynamic characteristics under complex environmental loads in extreme conditions. In this paper, taking a simplified 3-D finite element dynamic model in...A jack-up platform, with its particular structure, showed obvious dynamic characteristics under complex environmental loads in extreme conditions. In this paper, taking a simplified 3-D finite element dynamic model in extreme storm conditions as research object, a transient dynamic analysis method was proposed, which was under both regular and irregular wave loads. The steps of dynamic analysis under extreme conditions were illustrated with an applied case, and the dynamic amplification factor (DAF) was calculated for each response parameter of base shear, overturning moment and hull sway. Finally, the structural response results of dynamic and static were compared and analyzed. The results indicated that the static strength analysis of the Jack-up Platforms was not enough under the dynamic loads including wave and current, further dynamic response analysis considering both computational efficiency and accuracy was necessary.展开更多
Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered ...Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.展开更多
The optimal control is investigated for linear systems affected by external harmonic disturbance and applied to vibration control systems of offshore steel jacket platforms. The wave-induced force is the dominant load...The optimal control is investigated for linear systems affected by external harmonic disturbance and applied to vibration control systems of offshore steel jacket platforms. The wave-induced force is the dominant load that offshore structures are subjected to, and it can be taken as harmonic excitation for the system. The linearized Morison equation is employed to estimate the wave loading. The main result concerns the existence and design of a realizable optimal regulator, which is proposed to damp the forced oscillation in an optimal fashion. For demonstration of the effectiveness of the control scheme, the platform performance is investigated for different wave states. The simulations are based on the tuned mass damper and the active mass damper control devices. It is demonstrated that the control scheme is useful in reducing the displacement response of jacket-type offshore platforms.展开更多
An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is a...An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is an optimal frequency domain control method based on minimization of H-2 norm of the system transfer function In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding 'generalized' wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H-2 active control and the corresponding passive control using a TMD with the same device parameters.展开更多
In the process of concept design of offshore platforms, it is necessary to select the best from feasible alternatives through comparison and filter. The criterion set, used to evaluate and select the satisfying altern...In the process of concept design of offshore platforms, it is necessary to select the best from feasible alternatives through comparison and filter. The criterion set, used to evaluate and select the satisfying alternative, consists of many qualitative and quantitative factors. Therefore, the selection is a problem of multicriteria and semi-structural decision-making. Different from traditional methods in semi-structural decision-making, a new framework and methodology is presented in this paper for evaluation of offshore platform alternatives, First, the criterion set is established for the evaluation of alternatives. Next, the approach is studied to construct the relative membership degree matrix, in which both qualitative and quantitative factors are consistent with the uniform calculating standard. And then a new weight-assessing method is developed for calculation of the weights based on the relative membership degree matrix. Finally, a multi-hierarchy fuzzy optimum model is adopted to select the satisfying offshore platform alternative. A case study shows that the new framework and methodology are scientific, reasonable and easy to use in practice.展开更多
The statistical characteristics and parameters of loads and resistances are systematically studied for the development of probabilistic limit state design method for steel jacket offshore platforms in the China offsho...The statistical characteristics and parameters of loads and resistances are systematically studied for the development of probabilistic limit state design method for steel jacket offshore platforms in the China offshore area. The mean value, standard variance and distribution pattern of resistances and loads in different base perieds are presented. The statistical parameters of structural member resistance, self-weight, deck live load, and environmental loads such as wind, wave, current and ice, which are drawn on a large amount of observatian data of offshore environmental factors, and the design data of platforms in China Bohai Sea form the data set, providing a necessary basis for the calibration of load and resistance factors to realize the reliability-based design of jacket platform structures.展开更多
The objective of the present research is to examine the effectiveness of the lateral vibration control of wave-excited response of offshore platforms with magneto-rheological (MR) damper. In this study, the offshore p...The objective of the present research is to examine the effectiveness of the lateral vibration control of wave-excited response of offshore platforms with magneto-rheological (MR) damper. In this study, the offshore platform is simplified to be a singled degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The external 'generalized' wave force is determined with a white noise via a designed filter. A semi-active control method based on optimal control theory is proposed considering that the yield stress of the MR damper can he varied continuously within a certain range. The dynamics of SDOF structure coupled with the MR damper is investigated. Numerical simulation demonstrates that the MR damper with this control strategy can significantly reduce the maximum responses and the root-mean-square (RMS) values.展开更多
In this paper Nondestructive Damage Detection (NDD) for offshore platforms is investigated under operational conditions. As is known, there is no easy way to measure ambient excitation, so damage detection methods bas...In this paper Nondestructive Damage Detection (NDD) for offshore platforms is investigated under operational conditions. As is known, there is no easy way to measure ambient excitation, so damage detection methods based on ambient excitation have become very vital for the Structural Health Monitoring (SHM) of offshore platforms. The modal parameters (natural frequencies, damping ratios and mode shapes) are identified from structural response data with the Natural Excitation Technique (NExT) in conjunction with the Eigensystem Realization Algorithm (ERA) . A new method of damage detection is presented, which utilizes the invariance property of element modal strain energy. This method is to assign element modal strain energy to two parts, and defines two damage detection indicators. One is compression modal strain energy change ratio (CMSECR); the other is flexural modal strain energy change ratio (FMSECR). The present modal strain energy is obtained by incomplete modal shape and structural stiffness matr展开更多
Corrosion and fatigue cracks are major threats to the structural integrity of aging offshore platforms. For the rational estimation of the safety levels of aging platforms, a global reliability assessment approach for...Corrosion and fatigue cracks are major threats to the structural integrity of aging offshore platforms. For the rational estimation of the safety levels of aging platforms, a global reliability assessment approach for aging offshore platforms with corrosion and fatigue cracks is presented in this paper. The base shear capacity is taken as the global ultimate strength of the offshore platforms. It is modeled as a random process that decreases with time in the presence of corrosion and fatigue crack propagation. And the corrosion and fatigue crack growth rates in the main members and key joints are modeled as random variables. A simulation method of the extreme wave loads which are applied to the structures of offshore platforms is proposed too. Furthermore, the statistics of global base shear capacity and extreme wave loads are obtained by Monte Carlo simulation method. On the basis of the limit state equation of global failure mode, the instantaneous reliability and time dependent reliability assessment methods are both presented in this paper. Finally the instantaneous reliability index and time dependent failure probability of a jacket platform are estimated with different ages in the demonstration example.展开更多
Identification of modal parameters of a linear structure with output-only measurements has received much attention over the past decades. In the paper, the Natural Excitation Technique (NExT) is used for acquisition o...Identification of modal parameters of a linear structure with output-only measurements has received much attention over the past decades. In the paper, the Natural Excitation Technique (NExT) is used for acquisition of the impulse signals from the structural responses. Then Eigensystem Realization Algorithm (ERA) is utilized for modal identification. For disregarding the fictitious ‘computational modes', a procedure, Statistically Averaging Modal Frequency Method (SAMFM), is developed to distinguish the true modes from noise modes, and to improve the precision of the identified modal frequencies of the structure. An offshore platform is modeled with the finite element method. The theoretical modal parameters are obtained for a comparison with the identified values. The dynamic responses of the platform under random wave loading are computed for providing the output signals used for identification with ERA. Results of simulation demonstrate that the proposed method can determine the system modal frequency with high precision.展开更多
The wavelet packet transform is used for the damage detection of offshore platforms. When some damage occurs, the dynamic response parameters of the structure will shift subtly. However, in some cases, the dynamic par...The wavelet packet transform is used for the damage detection of offshore platforms. When some damage occurs, the dynamic response parameters of the structure will shift subtly. However, in some cases, the dynamic parameters, such as dynamic response, are not sensitive, and it is very difficult to predict the existence of damage. The present paper aims to describe how to find small damage by the use of wavelet packet transform. As the wavelet packet transform can be used to quickly find the singularity of the response signal on different scales, the acceleration signal of a damaged offshore platform in the time domain is transformed through the wavelet packet. Experimental results show that the Daubechies 4 wavelet transform can be used to detect damage.展开更多
The failure of one or even more components usually does riot lead to the collapse of the whole structure. Most of the analysis of fatigue is centered on only a single component which the researchers are interested in ...The failure of one or even more components usually does riot lead to the collapse of the whole structure. Most of the analysis of fatigue is centered on only a single component which the researchers are interested in or Much attention should be paid to. However, the collapse of a structure is the result of failure of a series of components in a specific order or path. This paper proposes an integrated approach to fatigue life prediction of whole structural system for offshore platforms, mainly describing the basic principles and prediction method. A method is presented for determining the failure path of the whole structure system and calculating the fatigue life in the determined failure path, The corresponding final collapse criteria for the whole structure system are discussed, A simple method of equivalent fatigue stress range calculation and a mathematical model of structural component fatigue life estimation in consideration of sea wave and sea ice loads are provided. As an application of the proposed approach, a fixed production platform Bohai No. 8 is chosen for the predication of fatigue life of the whole structure system by means of the software OSFAC developed based on the present methods.展开更多
On the basis of ice- induced forced vibration model, ice- induced displacement responses of offshore fixed platforms are investigated in both time domain and frequency domain. The relationships of ice-induced displace...On the basis of ice- induced forced vibration model, ice- induced displacement responses of offshore fixed platforms are investigated in both time domain and frequency domain. The relationships of ice-induced displacement responses with ice breaking modes, ice acting directions and platform structures are analyzed and determined. The results lead to an important conclusion obtained for the first time that ice breaking frequency and the natural frequency of the first mode of the platform are the two main factors that dominate the degree of vibration. The present work provides a firm basis for both design and operation of fixed platforms against ice loading.展开更多
In the present work, damage detection for offshore platforms is divided into three steps. Firstly, the located direction of the damaged member is detemfined by the pmbabilistic neural network with input of the change ...In the present work, damage detection for offshore platforms is divided into three steps. Firstly, the located direction of the damaged member is detemfined by the pmbabilistic neural network with input of the change rate of normalized medal frequency. Secondly, the profile and layer of the damaged member is also determined by the pmbabilistic neural network with input of the normalized damage-signal index. Finally, the damage extent is determined by the back propagation neural networks with input of the squared change rate of modal frequency. So the size of the network and the training time can be reduced greatly. All these networks are trained with simulated data obtained from the finite element model of an experiment model. Then these trained neural networks are examined with data obtained from impulse tests on the experiment model. The experiment results show that the trained neural networks are able to detect the damaged member with reasonable accuracy.展开更多
This paper develops a fuzzy pattern recognition model for group decision making to solve the problem of lectotype optimization of offshore platforms. The lack of data and the inexact or incomplete information for crit...This paper develops a fuzzy pattern recognition model for group decision making to solve the problem of lectotype optimization of offshore platforms. The lack of data and the inexact or incomplete information for criteria are the main cause of uncertainty in the evaluation process, therefore it is necessary to integrate the judgments from different decision makers with different experience, knowledge and preference. This paper first uses a complementary principle based pairwise comparison method to obtain the subjective weight of the criteria from each decision maker. A fuzzy pattern recognition model is then developed to integrate the judgments from all the decision makers and the information from the criteria, under the supervision of the subjective weights. Finally a case study is given to show the efficiency and robustness of the proposed model.展开更多
The dynamic response of offshore platforms is more serious in hostile sea environment than in shallow sea. In this paper, a hybrid solution combined with analytical and numerical method is proposed to compute the stoc...The dynamic response of offshore platforms is more serious in hostile sea environment than in shallow sea. In this paper, a hybrid solution combined with analytical and numerical method is proposed to compute the stochastic response of fixed offshore platforms to random waves, considering wave-structure interaction and non-linear drag force. The simulation program includes two steps: the first step is the eigenanalysis aspects associated the structure and the second step is response estimation based on spectral equations. The eigenanalysis could be done through conventional finite element method conveniently and its natural frequency and mode shapes obtained. In the second part of the process, the solution of the offshore structural response is obtained by iteration of a series of coupled spectral equations. Considering the third-order term in the drag force, the evaluation of the three-fold convolution should be demanded for nonlinear stochastic response analysis. To demonstrate this method, a numerical analysis is carried out for both linear and non-linear platform motions. The final response spectra have the typical two peaks in agreement with reality, indicating that the hybrid method is effective and can be applied to offshore engineering.展开更多
A Three-Scale Fuzzy Analytical Hierarchy Process (T-FAHP) is proposed by introducing the Three-Scale Analytical Hierarchy Process (T-AHP) and the trapezoid fuzzy number. A multi-objective optimization model based on t...A Three-Scale Fuzzy Analytical Hierarchy Process (T-FAHP) is proposed by introducing the Three-Scale Analytical Hierarchy Process (T-AHP) and the trapezoid fuzzy number. A multi-objective optimization model based on the T-FAHP is presented subsequently, in which many factors influencing the lectotype of offshore platform are taken into account synthetically, such as the original investment, the maintenance, cost, the ability of resisting fatigue and corrosion, the construction period, the threat to the environment, and so on. With this method, the experts can give the relatively precise ranking weight of each index and at the same time the requirement of consistence checking can be met, The result of a calculation example shows that the T-FAHP is practical.展开更多
A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i...A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.展开更多
With the introduction of the design variables of nodal coordinates, which reflect the embedded depth of the pile and the jacket bed height, a shape optimum design model for offshore jacket platforms is established. A ...With the introduction of the design variables of nodal coordinates, which reflect the embedded depth of the pile and the jacket bed height, a shape optimum design model for offshore jacket platforms is established. A sequential two-level optimum algorithm is developed based on the design variable gradation. On the basis of the finite element method, the sensitivity of the objective function and nodal displacement is analyzed. As an example, the BZ281 oil storage offshore platform, which ties in the Bohai oil field, is designed with the shape optimum model. The results are compared with the cross-section optimum design. The tendency of design variables and its reasons in the two methods are analyzed. In the shape optimum design, the value of objective function is obviously smaller than that of the initial design and the cross-section optimum design. Therefore, the advantage of structure shape optimum design for jacket platforms is remarkable.展开更多
基金financially supported by the National Key R&D Program of China(Grant No.2022YFB4200705)the National Natural Science Foundation of China(Grant No.52109146)。
文摘The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.
基金Supported by the National Natural Science Foundation of China (Grant No.51079034) Fundamental Research Funds for the Central Universities (Grant No. HEUCFRI003).
文摘A jack-up platform, with its particular structure, showed obvious dynamic characteristics under complex environmental loads in extreme conditions. In this paper, taking a simplified 3-D finite element dynamic model in extreme storm conditions as research object, a transient dynamic analysis method was proposed, which was under both regular and irregular wave loads. The steps of dynamic analysis under extreme conditions were illustrated with an applied case, and the dynamic amplification factor (DAF) was calculated for each response parameter of base shear, overturning moment and hull sway. Finally, the structural response results of dynamic and static were compared and analyzed. The results indicated that the static strength analysis of the Jack-up Platforms was not enough under the dynamic loads including wave and current, further dynamic response analysis considering both computational efficiency and accuracy was necessary.
基金funded by the Key Technology Research and Development Program(Nos.2022YFB4201301,and 2022YFB4201304)the National Natural Science Foundation of China(Nos.52101333,52071058,51939002,and 52071301)+2 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LQ21E090009)supported by the Natural Science Foundation of Liaoning Province(No.2022-KF-18-01)the special funds for Promoting High-Quality Development from the Department of Natural Resources of Guangdong Province(No.GDNRC[2020]016).
文摘Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.
文摘The optimal control is investigated for linear systems affected by external harmonic disturbance and applied to vibration control systems of offshore steel jacket platforms. The wave-induced force is the dominant load that offshore structures are subjected to, and it can be taken as harmonic excitation for the system. The linearized Morison equation is employed to estimate the wave loading. The main result concerns the existence and design of a realizable optimal regulator, which is proposed to damp the forced oscillation in an optimal fashion. For demonstration of the effectiveness of the control scheme, the platform performance is investigated for different wave states. The simulations are based on the tuned mass damper and the active mass damper control devices. It is demonstrated that the control scheme is useful in reducing the displacement response of jacket-type offshore platforms.
基金This work was partly supported by the Japan Society for the Promotion of Science (JSPS) for RONPAKU program by Foundation for University Key Teacher by the Ministry of Education of China
文摘An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H-2 control algorithm, which is an optimal frequency domain control method based on minimization of H-2 norm of the system transfer function In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding 'generalized' wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H-2 active control and the corresponding passive control using a TMD with the same device parameters.
基金The work was financially supported by the National Natural Science Foundation of China (Grant No. 59179376)
文摘In the process of concept design of offshore platforms, it is necessary to select the best from feasible alternatives through comparison and filter. The criterion set, used to evaluate and select the satisfying alternative, consists of many qualitative and quantitative factors. Therefore, the selection is a problem of multicriteria and semi-structural decision-making. Different from traditional methods in semi-structural decision-making, a new framework and methodology is presented in this paper for evaluation of offshore platform alternatives, First, the criterion set is established for the evaluation of alternatives. Next, the approach is studied to construct the relative membership degree matrix, in which both qualitative and quantitative factors are consistent with the uniform calculating standard. And then a new weight-assessing method is developed for calculation of the weights based on the relative membership degree matrix. Finally, a multi-hierarchy fuzzy optimum model is adopted to select the satisfying offshore platform alternative. A case study shows that the new framework and methodology are scientific, reasonable and easy to use in practice.
基金This researchis partiallyfunded bythe National Natural Science Foundation of China (Grant No.59895410)
文摘The statistical characteristics and parameters of loads and resistances are systematically studied for the development of probabilistic limit state design method for steel jacket offshore platforms in the China offshore area. The mean value, standard variance and distribution pattern of resistances and loads in different base perieds are presented. The statistical parameters of structural member resistance, self-weight, deck live load, and environmental loads such as wind, wave, current and ice, which are drawn on a large amount of observatian data of offshore environmental factors, and the design data of platforms in China Bohai Sea form the data set, providing a necessary basis for the calibration of load and resistance factors to realize the reliability-based design of jacket platform structures.
基金This work was financially supported by the National Natural Science Foundation of China.(Grant No.50179014)
文摘The objective of the present research is to examine the effectiveness of the lateral vibration control of wave-excited response of offshore platforms with magneto-rheological (MR) damper. In this study, the offshore platform is simplified to be a singled degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The external 'generalized' wave force is determined with a white noise via a designed filter. A semi-active control method based on optimal control theory is proposed considering that the yield stress of the MR damper can he varied continuously within a certain range. The dynamics of SDOF structure coupled with the MR damper is investigated. Numerical simulation demonstrates that the MR damper with this control strategy can significantly reduce the maximum responses and the root-mean-square (RMS) values.
基金This work was financially supported by 863 Project of China(Program No.2001aa602023-1),and by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of Ministry of Educa-tion of China.
文摘In this paper Nondestructive Damage Detection (NDD) for offshore platforms is investigated under operational conditions. As is known, there is no easy way to measure ambient excitation, so damage detection methods based on ambient excitation have become very vital for the Structural Health Monitoring (SHM) of offshore platforms. The modal parameters (natural frequencies, damping ratios and mode shapes) are identified from structural response data with the Natural Excitation Technique (NExT) in conjunction with the Eigensystem Realization Algorithm (ERA) . A new method of damage detection is presented, which utilizes the invariance property of element modal strain energy. This method is to assign element modal strain energy to two parts, and defines two damage detection indicators. One is compression modal strain energy change ratio (CMSECR); the other is flexural modal strain energy change ratio (FMSECR). The present modal strain energy is obtained by incomplete modal shape and structural stiffness matr
基金supported by the National Natural Science Foundation of China(Grant No.50609009)
文摘Corrosion and fatigue cracks are major threats to the structural integrity of aging offshore platforms. For the rational estimation of the safety levels of aging platforms, a global reliability assessment approach for aging offshore platforms with corrosion and fatigue cracks is presented in this paper. The base shear capacity is taken as the global ultimate strength of the offshore platforms. It is modeled as a random process that decreases with time in the presence of corrosion and fatigue crack propagation. And the corrosion and fatigue crack growth rates in the main members and key joints are modeled as random variables. A simulation method of the extreme wave loads which are applied to the structures of offshore platforms is proposed too. Furthermore, the statistics of global base shear capacity and extreme wave loads are obtained by Monte Carlo simulation method. On the basis of the limit state equation of global failure mode, the instantaneous reliability and time dependent reliability assessment methods are both presented in this paper. Finally the instantaneous reliability index and time dependent failure probability of a jacket platform are estimated with different ages in the demonstration example.
文摘Identification of modal parameters of a linear structure with output-only measurements has received much attention over the past decades. In the paper, the Natural Excitation Technique (NExT) is used for acquisition of the impulse signals from the structural responses. Then Eigensystem Realization Algorithm (ERA) is utilized for modal identification. For disregarding the fictitious ‘computational modes', a procedure, Statistically Averaging Modal Frequency Method (SAMFM), is developed to distinguish the true modes from noise modes, and to improve the precision of the identified modal frequencies of the structure. An offshore platform is modeled with the finite element method. The theoretical modal parameters are obtained for a comparison with the identified values. The dynamic responses of the platform under random wave loading are computed for providing the output signals used for identification with ERA. Results of simulation demonstrate that the proposed method can determine the system modal frequency with high precision.
基金This workis financially supported bythe National Natural Science Foundation of China (Grant No.50379025) andthe Teaching and Research Award Program(2002) for Outstanding Young Teachers in Higher Education Institutionsof the Ministry of Education,P. R.China
文摘The wavelet packet transform is used for the damage detection of offshore platforms. When some damage occurs, the dynamic response parameters of the structure will shift subtly. However, in some cases, the dynamic parameters, such as dynamic response, are not sensitive, and it is very difficult to predict the existence of damage. The present paper aims to describe how to find small damage by the use of wavelet packet transform. As the wavelet packet transform can be used to quickly find the singularity of the response signal on different scales, the acceleration signal of a damaged offshore platform in the time domain is transformed through the wavelet packet. Experimental results show that the Daubechies 4 wavelet transform can be used to detect damage.
基金This paper was financially supported by National Natural Science Foundation of China(Grant No.59895410)
文摘The failure of one or even more components usually does riot lead to the collapse of the whole structure. Most of the analysis of fatigue is centered on only a single component which the researchers are interested in or Much attention should be paid to. However, the collapse of a structure is the result of failure of a series of components in a specific order or path. This paper proposes an integrated approach to fatigue life prediction of whole structural system for offshore platforms, mainly describing the basic principles and prediction method. A method is presented for determining the failure path of the whole structure system and calculating the fatigue life in the determined failure path, The corresponding final collapse criteria for the whole structure system are discussed, A simple method of equivalent fatigue stress range calculation and a mathematical model of structural component fatigue life estimation in consideration of sea wave and sea ice loads are provided. As an application of the proposed approach, a fixed production platform Bohai No. 8 is chosen for the predication of fatigue life of the whole structure system by means of the software OSFAC developed based on the present methods.
基金The project was financially supported by China Postdoctor Science Foundationthe Key Project Foundation of the Chinese Academy of Sciences and China National Offshore Oil Corporation
文摘On the basis of ice- induced forced vibration model, ice- induced displacement responses of offshore fixed platforms are investigated in both time domain and frequency domain. The relationships of ice-induced displacement responses with ice breaking modes, ice acting directions and platform structures are analyzed and determined. The results lead to an important conclusion obtained for the first time that ice breaking frequency and the natural frequency of the first mode of the platform are the two main factors that dominate the degree of vibration. The present work provides a firm basis for both design and operation of fixed platforms against ice loading.
基金The project was financially supported by the National Natural Science Foundation of China (Grant No.50479027)and by the Natural Science Foundation of Qingdao (Grant No.05-2-JC-88)
文摘In the present work, damage detection for offshore platforms is divided into three steps. Firstly, the located direction of the damaged member is detemfined by the pmbabilistic neural network with input of the change rate of normalized medal frequency. Secondly, the profile and layer of the damaged member is also determined by the pmbabilistic neural network with input of the normalized damage-signal index. Finally, the damage extent is determined by the back propagation neural networks with input of the squared change rate of modal frequency. So the size of the network and the training time can be reduced greatly. All these networks are trained with simulated data obtained from the finite element model of an experiment model. Then these trained neural networks are examined with data obtained from impulse tests on the experiment model. The experiment results show that the trained neural networks are able to detect the damaged member with reasonable accuracy.
文摘This paper develops a fuzzy pattern recognition model for group decision making to solve the problem of lectotype optimization of offshore platforms. The lack of data and the inexact or incomplete information for criteria are the main cause of uncertainty in the evaluation process, therefore it is necessary to integrate the judgments from different decision makers with different experience, knowledge and preference. This paper first uses a complementary principle based pairwise comparison method to obtain the subjective weight of the criteria from each decision maker. A fuzzy pattern recognition model is then developed to integrate the judgments from all the decision makers and the information from the criteria, under the supervision of the subjective weights. Finally a case study is given to show the efficiency and robustness of the proposed model.
基金National Natural Science Foundation of China(Grant No.59895410,59779002)
文摘The dynamic response of offshore platforms is more serious in hostile sea environment than in shallow sea. In this paper, a hybrid solution combined with analytical and numerical method is proposed to compute the stochastic response of fixed offshore platforms to random waves, considering wave-structure interaction and non-linear drag force. The simulation program includes two steps: the first step is the eigenanalysis aspects associated the structure and the second step is response estimation based on spectral equations. The eigenanalysis could be done through conventional finite element method conveniently and its natural frequency and mode shapes obtained. In the second part of the process, the solution of the offshore structural response is obtained by iteration of a series of coupled spectral equations. Considering the third-order term in the drag force, the evaluation of the three-fold convolution should be demanded for nonlinear stochastic response analysis. To demonstrate this method, a numerical analysis is carried out for both linear and non-linear platform motions. The final response spectra have the typical two peaks in agreement with reality, indicating that the hybrid method is effective and can be applied to offshore engineering.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.59895410)
文摘A Three-Scale Fuzzy Analytical Hierarchy Process (T-FAHP) is proposed by introducing the Three-Scale Analytical Hierarchy Process (T-AHP) and the trapezoid fuzzy number. A multi-objective optimization model based on the T-FAHP is presented subsequently, in which many factors influencing the lectotype of offshore platform are taken into account synthetically, such as the original investment, the maintenance, cost, the ability of resisting fatigue and corrosion, the construction period, the threat to the environment, and so on. With this method, the experts can give the relatively precise ranking weight of each index and at the same time the requirement of consistence checking can be met, The result of a calculation example shows that the T-FAHP is practical.
文摘A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.
基金This project was financially supported by the National Natural Science Foundation of China(Grant No.59895410)
文摘With the introduction of the design variables of nodal coordinates, which reflect the embedded depth of the pile and the jacket bed height, a shape optimum design model for offshore jacket platforms is established. A sequential two-level optimum algorithm is developed based on the design variable gradation. On the basis of the finite element method, the sensitivity of the objective function and nodal displacement is analyzed. As an example, the BZ281 oil storage offshore platform, which ties in the Bohai oil field, is designed with the shape optimum model. The results are compared with the cross-section optimum design. The tendency of design variables and its reasons in the two methods are analyzed. In the shape optimum design, the value of objective function is obviously smaller than that of the initial design and the cross-section optimum design. Therefore, the advantage of structure shape optimum design for jacket platforms is remarkable.