期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The Jaffa Transform for Hessian Matrix Systems and the Laplace Equation
1
作者 Daniel A. Jaffa 《Journal of Applied Mathematics and Physics》 2024年第1期98-125,共28页
Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of ... Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation. 展开更多
关键词 Hessian matrices jacobian matrices Laplace Equation Linear Partial Differential Equations Systems of Partial Differential Equations Harmonic Functions Incompressible and Irrotational Fluid Mechanics
下载PDF
Type Synthesis of Fully-Decoupled 3R2T Parallel Mechanisms Based on Driven-Chain Principle
2
作者 周辉 陈海 +2 位作者 秦友蕾 葛姝翌 曹毅 《Journal of Donghua University(English Edition)》 EI CAS 2017年第3期415-423,共9页
To avoid the existence of nonlinear and strong coupling in parallel mechanisms,it is necessary to address special care to the type synthesis of mechanisms,especially for the type synthesis of fully-decoupled parallel ... To avoid the existence of nonlinear and strong coupling in parallel mechanisms,it is necessary to address special care to the type synthesis of mechanisms,especially for the type synthesis of fully-decoupled parallel mechanisms. Based on the screw theory and the driven-chain principle,a methodology of structural synthesis for fully-decoupled three-rotational( 3R) and two-translational( 2T)parallel mechanisms was proposed by analyzing the characteristics of the input-output relations for fully-decoupled parallel mechanisms.Firstly,according to the desired kinematic characteristics of fullydecoupled parallel mechanisms,a method was presented by virtue of screw theory to synthesize the desired forms for both the direct and the inverse Jacobian matrices. Secondly,according to the feature of the direct and the inverse Jacobian matrices,the effective screws,the actuated screws and the mobile un-actuated screws of each leg were established based on the reciprocal screw theory and all possible topology structures fulfilling the requirements were obtained.Finally,the desired fully-decoupled parallel mechanisms could be synthesized by using the structural synthesis rule and structural synthesis of fully-decoupled 3R2 T parallel mechanisms could be obtained exploiting the abovementioned methodology. Furthermore,the Jacobian matrix of a synthesized 3R2 T parallel mechanism was deduced to demonstrate the decoupling feature of the parallel mechanism,which also validated the correctness of the methodology of the type synthesis for fully-decoupled 3R2 T parallel mechanisms. 展开更多
关键词 desired kinematic decoupling inverse translational matrices topology jacobian reciprocal rotation
下载PDF
A Nonlinear Optimal Control Approach for Bacterial Infections Under Antibiotics Resistance
3
作者 RIGATOS Gerasimos ABBASZADEH Masoud +2 位作者 SIANO Pierluigi AL-NUM Mohammed ZOUARI Farouk 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第6期2293-2317,共25页
The overuse and misuse of antibiotics has become a major problem for public health.People become resistant to antibiotics and because of this the anticipated therapeutic effect is never reached.In-hospital infections ... The overuse and misuse of antibiotics has become a major problem for public health.People become resistant to antibiotics and because of this the anticipated therapeutic effect is never reached.In-hospital infections are often aggravated and large amounts of money are spent for treating complications in the patients'condition.In this paper a nonlinear optimal(H-infinity)control method is developed for the dynamic model of bacterial infections exhibiting resistance to antibiotics.First,differential flatness properties are proven for the associated state-space model.Next,the state-space description undergoes approximate linearization with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices.The linearization process takes place at each sampling instance around a time-varying operating point which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector.For the approximately linearized model of the system a stabilizing H-infinity feedback controller is designed.To compute the controller's gains an algebraic Riccati equation has to be repetitively solved at each time-step of the control algorithm.The global stability properties of the control scheme are proven through Lyapunov analysis.The proposed method achieves stabilization and remedy for the bacterial infection under moderate use of antibiotics. 展开更多
关键词 Bacterial infection differential flatness properties global stability jacobian matrices nonlinear H-infinity control resistance to antibiotics Riccati equation Taylor series expansion
原文传递
A Nonlinear Optimal Control Approach for Tracked Mobile Robots 被引量:2
4
作者 RIGATOS Gerasimos 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第4期1279-1300,共22页
The article proposes a nonlinear optimal(H-infinity)control approach for the model of a tracked robotic vehicle.The kinematic model of such a tracked vehicle takes into account slippage effects due to the contact of t... The article proposes a nonlinear optimal(H-infinity)control approach for the model of a tracked robotic vehicle.The kinematic model of such a tracked vehicle takes into account slippage effects due to the contact of the tracks with the ground.To solve the related control problem,the dynamic model of the vehicle undergoes first approximate linearization around a temporary operating point which is updated at each iteration of the control algorithm.The linearization process relies on first-order Taylor series expansion and on the computation of the Jacobian matrices of the state-space model of the vehicle.For the approximately linearized description of the tracked vehicle a stabilizing H-infinity feedback controller is designed.To compute the controller’s feedback gains an algebraic Riccati equation is solved at each time-step of the control method.The stability properties of the control scheme are proven through Lyapunov analysis.It is also demonstrated that the control method retains the advantages of linear optimal control,that is fast and accurate tracking of reference setpoints under moderate variations of the control inputs. 展开更多
关键词 Approximate linearization global asymptotic stability H-infinity control jacobian matrices Lyapunov analysis nonlinear optimal control Taylor series expansion tracked robotic vehicle
原文传递
A Nonlinear Optimal Control Method for Attitude Stabilization of Micro-Satellites 被引量:2
5
作者 G.Rigatos M.Abbaszadeh +1 位作者 K.Busawon L.Dala 《Guidance, Navigation and Control》 2022年第3期30-67,共38页
Attitude control and stabilization of micro-satellites is a nontrivial problem due to the highly nonlinear and multivariable structure of the satellites'state-space model.In this paper,a novel nonlinear optimal(H-... Attitude control and stabilization of micro-satellites is a nontrivial problem due to the highly nonlinear and multivariable structure of the satellites'state-space model.In this paper,a novel nonlinear optimal(H-infinity)control approach is developed for this control problem.The dynamic model of the satellite's attitude dynamics undergoesfirst approximate linearization around a temporary operating point which is updated at each iteration of the control algorithm.The linearization process relies on first-order Taylor series expansion and on the computation of the Jacobian matrices of the state-space model of the satellite's attitude dynamics.For the approximately linearized description of the satellite's attitude a stabilizing H-infinity feedback controller is designed.To compute the controller's feedback gains,an algebraic Riccati equation is solved at each time-step of the control method.The stability properties of the control scheme are proven through Lyapunov analysis.It is also demonstrated that the control method retains the advantages of linear optimal control that is fast and accurate tracking of the reference setpoints under moderate variations of the control inputs. 展开更多
关键词 Micro-satellites attitude control nonlinear optimal control H-infinity control differentialfiatness properties Taylor series expansion jacobian matrices Lyapunov analysis global asymptotic stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部