The contents of seven different phenolic acids such as gallic acid, catechinic acid, pyrocatechol, caffeic acid, coumaric acid, ferulic acid and benzoic acid in the poplar leaves (Populus Simonii×Populus Pyramib...The contents of seven different phenolic acids such as gallic acid, catechinic acid, pyrocatechol, caffeic acid, coumaric acid, ferulic acid and benzoic acid in the poplar leaves (Populus Simonii×Populus Pyramibalis c.v and Populus deltoids) suffocated by Methyl jasmonate (MeJA) and Methyl salicylate (MeSA) were monitored for analyzing their functions in interplant communications by using high-pressure liquid chromatography (HPLC).The results showed that the contents of phenolic acids had obviously difference in leaves exposed to either MeSA or MeJA.When P.deltoides leaves exposed to MeJA or MeSA, the level of gallic acid, coumaric acid, caffeic acid, ferulic acid and benzoic acid was increased, gallic acid in leaves treated with MeJA comes to a peak at 24 h while to a peak at 12-d having leaves treated with MeSA.When P.Simonii ×P.Pyramibalis c.v leaves were exposed to MeJA or MeSA, the level of gallic acid, pyrocatechol and ferulic acid was increased; The catechinic acid and benzoic acid had a little drop; The caffeic acid and coumaric acid were undetected in both suffocated and control leaves.This changed pattern indicated that MeJA and MeSA can act as airborne signals to induce defense response of plants.展开更多
Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germinat...Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germination was identified in a genome-wide association study.The candidate gene JASMONATE ZIM-DOMAIN 5(OsJAZ5)of the QTL was verified that positively regulates seed germination.OsJAZ5 regulation of seed germination involves an OsABI3-mediated abscisic acid pathway.Overexpression of OsJAZ5 facilitated seed germination.The application of OsJAZ5 might be useful for increasing seed germination for rice direct seeding.展开更多
Lilies are widely cultivated for cut flowers,but their large anthers carry a considerable amount of colored pollen that is dispersed easily.Studying the molecular mechanism of anther development and dehiscence could h...Lilies are widely cultivated for cut flowers,but their large anthers carry a considerable amount of colored pollen that is dispersed easily.Studying the molecular mechanism of anther development and dehiscence could help solve this problem.LoMYB21,encoding a putative R2R3v-myb avian myeloblastosis viral oncogene homolog(MYB)transcription factor,was identified from oriental lilies(Lilium‘Siberia’).Real-time quantitative PCR analysis showed that LoMYB21 was mainly expressed in the anther,filament and stigma and had high expression during the late stages of lily anther development.LoMYB21 had transactivation activity and was located in the nucleus through yeast one-hybrid assays and transient expression in Nicotiana benthamiana.Suppression of LoMYB21 by virus-induced gene silencing(VIGS)in Lilium‘Siberia’led to anther indehiscence and reduced the expression of genes related to Jasmonate acid(JA)biosynthesis and signal transduction.Induction of LoMYB21 in DEX::LoMYB21 transgenic Arabidopsis caused procumbent inflorescences that became infertile,accompanied by higher expression of JA biosynthetic and signaling genes.These results demonstrated that JA content and signaling were abnormal in silenced lily and transgenic LoMYB21 Arabidopsis,which affected anther development.Our study indicated that LoMYB21 could regulate lily anther dehiscence through JA biosynthesis and signaling during the late stages of anther development.展开更多
Atmospheric CO_(2)concentration is elevated globally,which has“CO_(2)fertilization effects”and potentially improves plant photosynthesis,yield,and productivity.Despite the beneficial effect of CO_(2)fertilization be...Atmospheric CO_(2)concentration is elevated globally,which has“CO_(2)fertilization effects”and potentially improves plant photosynthesis,yield,and productivity.Despite the beneficial effect of CO_(2)fertilization being modulated by vapor pressure deficit(VPD),the underlying mechanism is highly uncertain.In the present study,the potential roles of hormones in determining CO_(2)fertilization effects under contrasting high and low VPD conditions were investigated by integrated physiological and transcriptomic analyses.Beneficial CO_(2)fertilization effects were offset under high VPD conditions and were constrained by plant water stress and photosynthetic CO_(2)utilization.High VPD induced a large passive water driving force,which disrupted the water balance and consequently caused plant water deficit.Leaf water potential,turgor pressure,and hydraulic conductance declined under high VPD stress.The physiological evidence combined with transcriptomic analyses demonstrated that abscisic acid(ABA)and jasmonic acid(JA)potentially acted as drought-signaling molecules in response to high VPD stress.Increased foliar ABA and JA content triggered stomatal closure to prevent excessive water loss under high VPD stress,which simultaneously increased the diffusion resistance for CO_(2)uptake from atmosphere to leaf intercellular space.High VPD also significantly increased mesophyll resistance for CO_(2)transport from stomatal cavity to fixation site inside chloroplast.The chloroplast“sink”CO_(2)availability was constrained by stomatal and mesophyll resistance under high VPD stress,despite the atmospheric“source”CO_(2)concentration being elevated.Thus,ABA-and JA-mediated drought-resistant mechanisms potentially modified the beneficial effect of CO_(2)fertilization on photosynthesis,plant growth,and yield productivity.This study provides valuable information for improving the utilization efficiency of CO_(2)fertilization and a better understanding of the physiological processes.展开更多
Onion plants form spherical bulbs under long-day conditions.Substances regulating bulb formation remain unknown.In the course of chemical studies on the bulb formation,α-linolenic acid was isolated from onion extract...Onion plants form spherical bulbs under long-day conditions.Substances regulating bulb formation remain unknown.In the course of chemical studies on the bulb formation,α-linolenic acid was isolated from onion extracts as an antibulbing substance,the amount of which was synchronized with the bulb formation.Since allene oxide synthase inhibitor canceled the antibulbing activity ofα-linolenic acid,it was disclosed that jasmonic acid concerns this regulation.Structure-activity-relationship study revealed that its(3R,7S)stereochemistry is necessary for showing its antibulbing activity.It is concluded that(3R,7S)-jasmonate derived fromα-linolenic acid actually participates in the regulation of bulb formation.展开更多
Jasmonic acid is a crucial phytohormone that plays a pivotal role,serving as a regulator to balancing plant development and resistance.However,there are analogous and distinctive characteristics exhibited in JA biosyn...Jasmonic acid is a crucial phytohormone that plays a pivotal role,serving as a regulator to balancing plant development and resistance.However,there are analogous and distinctive characteristics exhibited in JA biosynthesis,perception,and signal transduction pathways in both herbaceous and woody plants.Moreover,the majority of research subjects have predominantly focused on the function of JA in model or herbaceous plants.Consequently,there is a significant paucity of studies investigating JA regulation networks in woody plants,particularly concerning post-transcriptional regulatory events such as alternative splicing(AS).This review article aims to conduct a comprehensive summary of advancements that JA signals regulate plant development across various woody species,comparing the analogous features and regulatory differences to herbaceous counterparts.In addition,we summarized the involvement of AS events including splicing factor(SF)and transcripts in the JA regulatory network,highlighting the effectiveness of high-throughput proteogenomic methods.A better understanding of the JA signaling pathway in woody plants has pivotal implications for forestry production,including optimizing plant management and enhancing secondary metabolite production.展开更多
The roles of on endogenous jasmonates (JAs) and salicylic acid (SA) in wounding response were investigated. Pea (Pisum sativum L.) seedlings were treated with three different methods including mechanical woundin...The roles of on endogenous jasmonates (JAs) and salicylic acid (SA) in wounding response were investigated. Pea (Pisum sativum L.) seedlings were treated with three different methods including mechanical wounding, JAs application, and SA application. The contents of endogenous JAs and SA, as well as the activities of the related enzymes were detected by enzyme-linked immunosorbent assay (ELISA), high performance liquid chromatography (HPLC), and spectrophotometer, respectively. The results showed that endogenous JA rapidly accumulated within 30 min after wounding. The increase in the activities of both lipoxygenase (LOX) and allene oxide synthase (AOS) lagged behind JAs burst. A second slight increase in JAs level was observed at 24 h after wounding treatment, and at the same time point, higher activities of LOX and AOS were also detected. Endogenous free SA content decreased accompanied with JAs burst. Effects of exogenous JA application were similar to those of wounding treatment on endogenous SA level and phenylalanine ammonia lyase (PAL) activity, whereas exogenous SA application led to the significant inhibition of LOX and AOS activities and the decrease of endogenous JAs level at the early stage of treatment. It is thus suggested that JAs burst and SA decrease in early response to wounding may constitute an important mechanism by which plant starts the related defense reaction and adapts to wounding stress.展开更多
We evaluated the biomass and ergosterol content of Hericium erinaceus mycelium, and extracellular enzyme activities in H. erinaceus liquid culture following salicylic acid(SA) and methyl jasmonic acid(Me JA)supple...We evaluated the biomass and ergosterol content of Hericium erinaceus mycelium, and extracellular enzyme activities in H. erinaceus liquid culture following salicylic acid(SA) and methyl jasmonic acid(Me JA)supplementation. The optimal SA concentration was100 lmoláL-1, where the highest ergosterol content of 2.33 mgág-1was obtained following 6-day cultivation with100 lmoláL-1SA supplementation, and which was significantly higher than the unsupplemented control(p / 0.01). Following 4-day supplementation with50 lmoláL-1Me JA, the highest ergosterol content obtained was 1.988 mgág-1, which was 25.8 % higher than the unsupplemented control. Our data indicate that SA and Me JA supplementation improves ergosterol content in H.erinaceus mycelium.展开更多
[Objective] This study was carried out to determine the induction effect of jasmonic acid(JA)on powdery mildew resistance in wheat,the activation effect on the expressions of plant disease resistance related genes,a...[Objective] This study was carried out to determine the induction effect of jasmonic acid(JA)on powdery mildew resistance in wheat,the activation effect on the expressions of plant disease resistance related genes,and to investigate the relationship between the induced resistance and the gene expression patterns.[Method] Three powdery mildew susceptible cultivars of "Chinese Spring","Pumai 9" and "Zhoumai 18" typically representing different phenotypes in the field were employed.The powdery mildew was assessed by detached leaf assay,and real time quantitative RT-PCR was used to determine the expression patterns of 9 disease resistance related genes of PR1(PR1.1),PR2(β,1-3 glucanase),PR3(chitinase),PR4(wheatwin1),PR5(thaumatin-like protein),PR9(TaPERO,peroxidase),PR10,TaGLP2a(germin-like)and Ta-JA2(jasmonate-induced protein)in leaf of the three cultivars.[Result] MeJA application enhanced the powdery mildew resistances of "Chinese Spring","Pumai 9" and "Zhoumai 18".The induced powdery mildew resistance could be detected from 12 h to 96 h after MeJA treatment,and the peak value was at 24 h.Though there were differences between the three cultivars,MeJA significantly effect on the expressions of the 8 disease resistance related genes except TaGLP2a,and the peak values were at 12 h,24 h or 48 h after treatments.The strongest activation of MeJA was on PR9 and PR1 that their expressions could reach more than 100 times of the untreated samples.MeJA strongly activated PR2、PR4、PR5、PR3、PR10 and Ta-JA2,their expression could reach 10 to 70 times,and there was almost no activation effect on TaGLP2a.The induced powdery mildew resistance positively correlated with the induced expressions of the 8 disease related genes.[Conclusion] The induced powdery mildew resistance positively correlated with the induced expressions of the disease related genes.Jasmonate signalling plays a role in defence against Blumeria graminis f.sp.tritici.and future manipulation of this pathway may improve powdery mildew resistance in wheat.展开更多
The relationship between the effect of exogenous jasmonic acid (JA) on the induction of secondary laticifer differentiation and the distribution of JA in the seedling of Hevea brasiliensis Mull. Arg. was investigated ...The relationship between the effect of exogenous jasmonic acid (JA) on the induction of secondary laticifer differentiation and the distribution of JA in the seedling of Hevea brasiliensis Mull. Arg. was investigated with the aid of experimental morphological and radioisotope technique. Most radioactivity of H-3-JA sustained in treated site within one hour while no radioactivity was detected in new shoot and the radioactivity in upper leaf was much less than that in the parts below the treated site, suggesting that JA was mainly transported downwards in the shoot of H brasiliensis. Mechanical wounding hindered the entrance of exogenous JA remarkably while held back the entered JA to the regions around wounded site. The effect of exogenous JA and mechanical wounding on the induction of the secondary laticifer differentiation was limited to treated site where high level of JA was expected. Mechanical wounding reduced the effect of exogenous JA on the differentiation of secondary laticifer, which could be ascribed to the hindrance of mechanical wounding to the entrance of exogenous JA. It was concluded from the combined data that a high accumulation of JA was required for inducing the secondary laticifer differentiation in H. brasiliensis.展开更多
Exogenous jasmonic acid (JA) has been showed to be able to induce stomatal closure in Vicia faba L. in previous investigations. The transport and distribution of 3H-JA affected by localized scorch on V. faba seedl...Exogenous jasmonic acid (JA) has been showed to be able to induce stomatal closure in Vicia faba L. in previous investigations. The transport and distribution of 3H-JA affected by localized scorch on V. faba seedling were studied with radioisotope technique. The results showed that 3H-JA could be transported up or down at the rate of 4-5 cm·min -1 following feeding into root or shoot tip. The transport of 3H-JA in shoot reached a relative stable rate at 30 min after being fed through root. Wounding by scorch in the youngest leaf caused an increase in the transport of 3H-JA from root to shoot and enhanced the distribution of 3H-JA in the wounded leaf. However, distribution of 3H-JA in unwounded leaves increased after 5 h being fed through the youngest leaf. It was noticed that wounding improved accumulation of 3H-JA in abaxial epidermis. Consistent results were obtained: wounding prevented transport of 3H-JA out from the youngest leaf to root; These observations suggest that JA plays an important role as a defense signal and might be involved in the regulation of the stomatal movement in response to wounding stress.展开更多
[Objective]The aim was to explore the molecular mechanism of plant resistance to various stress response.[Method]The expression of LeWRKY1 in tomato seedlings under treatment with B.cinerea,exogenous JA and SA were ex...[Objective]The aim was to explore the molecular mechanism of plant resistance to various stress response.[Method]The expression of LeWRKY1 in tomato seedlings under treatment with B.cinerea,exogenous JA and SA were explored by real time quantitative RT-PCR technology.[Result]JA induced the expression of LeWRKY1,but SA did not.LeWRKY1 expression was up-regulated under B.cinerea infection.[Conclusion]LeWRKY1 might be involved in the tomato defense response to B.cinerea through JA dependent but SA independent signal pathway.展开更多
[Objective] This experiment aimed to evaluate the effects of calcium and Jasmonic acid(JA) on the expression of CBF in spinach. [Methods] The seedlings of spinach were treated with low temperature (4 ℃), JA or A2...[Objective] This experiment aimed to evaluate the effects of calcium and Jasmonic acid(JA) on the expression of CBF in spinach. [Methods] The seedlings of spinach were treated with low temperature (4 ℃), JA or A23187, then used for detecting the expression of CBF by northern blotting. [Results] The results showed that the CBF expression was regulated by low temperature and JA positively. [Conclusions] Low temperature may increase the JA content of the cell firstly, then JA induced the increase of cytosolic calcium concentration ([Ca2+]cyt), and the JA induced Ca2+ transmitted the low temperature signal through CaM or CaM related proteins, regulating the CBF expression.展开更多
[Objective] This study was to investigate the role of IP3 sensitive calcium channel in the JA-induced calcium mobilization pathway.[Method] Arabidopsis thaliana leaves were labeled by Fluorescent probe Fluo-3/AM under...[Objective] This study was to investigate the role of IP3 sensitive calcium channel in the JA-induced calcium mobilization pathway.[Method] Arabidopsis thaliana leaves were labeled by Fluorescent probe Fluo-3/AM under low temperature at 4 ℃ to measure the fluorescent intensity of intracellular Ca2+ which was pretreated with heparin on jasmonic acid(JA)-induced.[Results] When A.thaliana leaf cells were pretreated with 10,50 or 100 ng/ml heparin,intercellular free Ca2+ fluorescence intensity was reduced in comparison with negative control.Once the heparin-pretreated A.thaliana leaf cells were stimulated with 100 μmol/L JA,intercellular Ca2+ fluorescence intensity increased gradually and tended to be stable at a degree equivalent with that in negative control.[Conclusion] The experiment showed that the pretreatment with heparin could inhibit the increase of the intracellular Ca2+ concentration significantly which JA-induced in leaves of Arabidopsis thaliana.展开更多
Jasmonic acid (JA) is an important phytohormone that regulates plant defense responses against herbivore attack, pathogen infection and mechanical wounding. In this report, we provided biochemical and genetic eviden...Jasmonic acid (JA) is an important phytohormone that regulates plant defense responses against herbivore attack, pathogen infection and mechanical wounding. In this report, we provided biochemical and genetic evidence to show that the Arabidopsis thaliana NAC family proteins ANAC019 and ANAC055 might function as transcription activators to regulate JA-induced expression of defense genes. The role of the two NAC genes in JA signaling was examined with the anacO19 anac055 double mutant and with transgenic plants overexpressing ANACO19 or ANAC055. The anacO19 anac055 double mutant plants showed attenuated JA-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) and LIPOXYGENASE2 (LOX2) expression, whereas transgenic plants overexpressing the two NAC genes showed enhanced JA-induced VSP1 and LOX2 expression. That the JA-induced expression of the two NAC genes depends on the function of COIl and AtMYC2, together with the finding that overexpression of ANACO19 partially rescued the JA-related phenotype of the atmyc2-2 mutant, has led us to a hypothesis that the two NAC proteins act downstream of AtMYC2 to regulate JA-signaled defense responses. Further evidence to substantiate this idea comes from the observation that the response of the anacO19 anac055 double mutant to a necrotrophic fungus showed high similarity to that of the atmyc2-2 mutant.展开更多
Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies have established that ...Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies have established that JA also performs a critical role in several aspects of plant development. Here, we describe the characterization of the Arabidopsis mutantjasmonic acid-hypersensitivel-1 (jah1-1), which is defective in several aspects of JA responses. Although the mutant exhibits increased sensitivity to JA in root growth inhibition, it shows decreased expression of JA-inducible defense genes and reduced resistance to the necrotrophic fungus Botrytis cinerea. Gene cloning studies indicate that these defects are caused by a mutation in the cytochrome P450 protein CYP82C2. We provide evidence showing that the compromised resistance of thejah1-1 mutant to B. cinerea is accompanied by decreased expression of JA-induced defense genes and reduced accumulation of JA-induced indole glucosinolates (IGs). Conversely, the enhanced resistance to B. cinerea in CYP82C2-overexpressing plants is accompanied by increased expression of JA-induced defense genes and elevated levels of JA-induced IGs. We demonstrate that CYP82C2 affects JA-induced accumulation of the IG biosynthetic precursor tryptophan (Trp), but not the JA-induced IAA or pathogen-induced camalexin. Together, our results support a hypothesis that CYP82C2 may act in the metabolism of Trp-derived secondary metabolites under conditions in which JA levels are elevated. Thejah1-1 mutant should thus be important in future studies toward understanding the mechanisms underlying the complexity of JA-mediated differential responses, which are important for plants to adapt their growth to the ever-changing environments.展开更多
Drought stress is a limiting factor for wheat production and food security.Drought priming has been shown to increase drought tolerance in wheat.However,the underlying mechanisms are unknown.In the present study,the g...Drought stress is a limiting factor for wheat production and food security.Drought priming has been shown to increase drought tolerance in wheat.However,the underlying mechanisms are unknown.In the present study,the genes encoding the biosynthesis and metabolism of abscisic acid(ABA)and jasmonic acid(JA),as well as genes involved in the ABA and JA signaling pathways were up-regulated by drought priming.Endogenous concentrations of JA and ABA increased following drought priming.The interplay between JA and ABA in plant responses to drought priming was further investigated using inhibitors of ABA and JA biosynthesis.Application of fluridone(FLU)or nordihydroguaiaretic acid(NDGA)to primed plants resulted in lower chlorophyll-fluorescence parameters and activities of superoxide dismutase and glutathione reductase,and higher cell membrane damage,compared to primed plants(PD)under drought stress.NDGA+ABA,but not FLU+JA,restored priming-induced tolerance,as indicated by a finding of no significant difference from PD under drought stress.Under drought priming,NDGA induced the suppression of ABA accumulation,while FLU did not affect JA accumulation.These results were consistent with the expression of genes involved in the biosynthesis of ABA and JA.They suggest that ABA and JA are required for priming-induced drought tolerance in wheat,with JA acting upstream of ABA.展开更多
In order to elucidate the contributions of JA in orchestrating disease resistance in potato plants,the potato genotype‘SD20’,which exhibits strong resistance against the highly virulent Phytophthora infestans isolat...In order to elucidate the contributions of JA in orchestrating disease resistance in potato plants,the potato genotype‘SD20’,which exhibits strong resistance against the highly virulent Phytophthora infestans isolate CN152,while infected by the super virulent isolate 2013-18-306,was treated with exogenous JA and then challenged by inoculation with 2013-18-306.The results showed that exogenously applied JA significantly delayed the onset and alleviated the symptoms of late blight,indicating exogenous JA could induce resistance to P.infestans in the early biotrophic stage of infection in‘SD20’plants.To further clarify the role of JA in the early defense response and identify key genes involved in JA signal transduction,gene expression profiling via RNA sequencing(RNA-seq)in‘SD20’plants treated with exogenously applied JA was performed.A total of 2927 differentially expressed genes were specifically induced,the majority encoded transcription factors,protein kinases,secondary metabolites,defense enzymes and disease resistance related proteins.GO functional annotation and KEGG metabolic pathway analysis showed that exogenously applied JA rapidly induced the expression of genes related to immune response regulation,pathogen defense,and other biological processes,and stimulated endogenous JA synthesis and signal transduction,and the overall early pathogen defense response in‘SD20’.These results provide useful information in understanding the JA’s function involved in pathogen defense responses and a theoretical basis for the application of JA in potato production.展开更多
Jasmonates are class of plant growth regulators act as signal molecule that intercede various components in physiological and metabolic regulation, stress responses and possibly communication through signal transducti...Jasmonates are class of plant growth regulators act as signal molecule that intercede various components in physiological and metabolic regulation, stress responses and possibly communication through signal transduction. Oxidative stress due to heavy metal exposure stimulates synthesis and activity of antioxidant metabolites and enhances antioxidant enzyme activities that could protect plant tissues. The aim of this study was to investigate the exogenous effect of JA at seed level which can transduce throughout seedling growth and regulate antioxidant activities such as superoxide dismutase (SOD;EC 1.15.1.1) and guaiacol peroxidase (POD;EC 1.11.1.7) in 12 days old seedlings of pigeon pea (Cajanus cajan (L.) Millsp.) in presence and/or absence of copper. The activity of SOD and POD increased significantly in presence of Cu2+ after seed priming with JA. JA also helps in chlorophyll and carotenoid accumulation and neutralizes the toxic effect of Cu2+ on seedlings. This is the first report of JA effect on photosynthetic pigment accumulation and H2O2 mitigating enzymes i.e. SOD and POD and it could be recommended that seed priming with JA help in ameliorating toxic effect of Cu2+.展开更多
基金This research is supported by National Natural Science Foundation of China (No.30170764)
文摘The contents of seven different phenolic acids such as gallic acid, catechinic acid, pyrocatechol, caffeic acid, coumaric acid, ferulic acid and benzoic acid in the poplar leaves (Populus Simonii×Populus Pyramibalis c.v and Populus deltoids) suffocated by Methyl jasmonate (MeJA) and Methyl salicylate (MeSA) were monitored for analyzing their functions in interplant communications by using high-pressure liquid chromatography (HPLC).The results showed that the contents of phenolic acids had obviously difference in leaves exposed to either MeSA or MeJA.When P.deltoides leaves exposed to MeJA or MeSA, the level of gallic acid, coumaric acid, caffeic acid, ferulic acid and benzoic acid was increased, gallic acid in leaves treated with MeJA comes to a peak at 24 h while to a peak at 12-d having leaves treated with MeSA.When P.Simonii ×P.Pyramibalis c.v leaves were exposed to MeJA or MeSA, the level of gallic acid, pyrocatechol and ferulic acid was increased; The catechinic acid and benzoic acid had a little drop; The caffeic acid and coumaric acid were undetected in both suffocated and control leaves.This changed pattern indicated that MeJA and MeSA can act as airborne signals to induce defense response of plants.
基金supported by the Hainan Province Science and Technology Special Fund,China(ZDYF2023XDNY086)the Project of Sanya Yazhou Bay Science and Technology City,China(SCKJ-JYRC-2022-87)+1 种基金the Natural Science Foundation of Guangdong Province,China(2023A1515012052,2023A1515012092)the Science and Technology Project of Guangzhou,China(2023A04J0749,2023A04J1452).
文摘Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germination was identified in a genome-wide association study.The candidate gene JASMONATE ZIM-DOMAIN 5(OsJAZ5)of the QTL was verified that positively regulates seed germination.OsJAZ5 regulation of seed germination involves an OsABI3-mediated abscisic acid pathway.Overexpression of OsJAZ5 facilitated seed germination.The application of OsJAZ5 might be useful for increasing seed germination for rice direct seeding.
基金funded by National Key R&D Program of China(Grant Nos.2020YFD1000402,2018YFD1000400)Chinese Universities Scientific Fund(Grant Nos.2021TC102,2018QC096).
文摘Lilies are widely cultivated for cut flowers,but their large anthers carry a considerable amount of colored pollen that is dispersed easily.Studying the molecular mechanism of anther development and dehiscence could help solve this problem.LoMYB21,encoding a putative R2R3v-myb avian myeloblastosis viral oncogene homolog(MYB)transcription factor,was identified from oriental lilies(Lilium‘Siberia’).Real-time quantitative PCR analysis showed that LoMYB21 was mainly expressed in the anther,filament and stigma and had high expression during the late stages of lily anther development.LoMYB21 had transactivation activity and was located in the nucleus through yeast one-hybrid assays and transient expression in Nicotiana benthamiana.Suppression of LoMYB21 by virus-induced gene silencing(VIGS)in Lilium‘Siberia’led to anther indehiscence and reduced the expression of genes related to Jasmonate acid(JA)biosynthesis and signal transduction.Induction of LoMYB21 in DEX::LoMYB21 transgenic Arabidopsis caused procumbent inflorescences that became infertile,accompanied by higher expression of JA biosynthetic and signaling genes.These results demonstrated that JA content and signaling were abnormal in silenced lily and transgenic LoMYB21 Arabidopsis,which affected anther development.Our study indicated that LoMYB21 could regulate lily anther dehiscence through JA biosynthesis and signaling during the late stages of anther development.
基金y the National Natural Science Foundation of China(Grant No.32102466)the Major Scientific Innovation Project of Shandong Province(Grant No.2022CXGC020708).
文摘Atmospheric CO_(2)concentration is elevated globally,which has“CO_(2)fertilization effects”and potentially improves plant photosynthesis,yield,and productivity.Despite the beneficial effect of CO_(2)fertilization being modulated by vapor pressure deficit(VPD),the underlying mechanism is highly uncertain.In the present study,the potential roles of hormones in determining CO_(2)fertilization effects under contrasting high and low VPD conditions were investigated by integrated physiological and transcriptomic analyses.Beneficial CO_(2)fertilization effects were offset under high VPD conditions and were constrained by plant water stress and photosynthetic CO_(2)utilization.High VPD induced a large passive water driving force,which disrupted the water balance and consequently caused plant water deficit.Leaf water potential,turgor pressure,and hydraulic conductance declined under high VPD stress.The physiological evidence combined with transcriptomic analyses demonstrated that abscisic acid(ABA)and jasmonic acid(JA)potentially acted as drought-signaling molecules in response to high VPD stress.Increased foliar ABA and JA content triggered stomatal closure to prevent excessive water loss under high VPD stress,which simultaneously increased the diffusion resistance for CO_(2)uptake from atmosphere to leaf intercellular space.High VPD also significantly increased mesophyll resistance for CO_(2)transport from stomatal cavity to fixation site inside chloroplast.The chloroplast“sink”CO_(2)availability was constrained by stomatal and mesophyll resistance under high VPD stress,despite the atmospheric“source”CO_(2)concentration being elevated.Thus,ABA-and JA-mediated drought-resistant mechanisms potentially modified the beneficial effect of CO_(2)fertilization on photosynthesis,plant growth,and yield productivity.This study provides valuable information for improving the utilization efficiency of CO_(2)fertilization and a better understanding of the physiological processes.
基金Supported by the Naito FoundationGrant-in-Aid for Scientific Research (22K05448)from Japan Society for the Promotion of Science.
文摘Onion plants form spherical bulbs under long-day conditions.Substances regulating bulb formation remain unknown.In the course of chemical studies on the bulb formation,α-linolenic acid was isolated from onion extracts as an antibulbing substance,the amount of which was synchronized with the bulb formation.Since allene oxide synthase inhibitor canceled the antibulbing activity ofα-linolenic acid,it was disclosed that jasmonic acid concerns this regulation.Structure-activity-relationship study revealed that its(3R,7S)stereochemistry is necessary for showing its antibulbing activity.It is concluded that(3R,7S)-jasmonate derived fromα-linolenic acid actually participates in the regulation of bulb formation.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20221334)the Jiangsu Agricultural Science and Technology Innovation Fund(CX(21)2023)+2 种基金the Science Technology and Innovation Committee of Shenzhen(JCYJ20210324115408023)the Major Project of Natural Science Research in Colleges of Jiangsu Province(20KJA220001)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_1115).
文摘Jasmonic acid is a crucial phytohormone that plays a pivotal role,serving as a regulator to balancing plant development and resistance.However,there are analogous and distinctive characteristics exhibited in JA biosynthesis,perception,and signal transduction pathways in both herbaceous and woody plants.Moreover,the majority of research subjects have predominantly focused on the function of JA in model or herbaceous plants.Consequently,there is a significant paucity of studies investigating JA regulation networks in woody plants,particularly concerning post-transcriptional regulatory events such as alternative splicing(AS).This review article aims to conduct a comprehensive summary of advancements that JA signals regulate plant development across various woody species,comparing the analogous features and regulatory differences to herbaceous counterparts.In addition,we summarized the involvement of AS events including splicing factor(SF)and transcripts in the JA regulatory network,highlighting the effectiveness of high-throughput proteogenomic methods.A better understanding of the JA signaling pathway in woody plants has pivotal implications for forestry production,including optimizing plant management and enhancing secondary metabolite production.
基金the National Natural Science Foundation of China (30471192, 30671468).
文摘The roles of on endogenous jasmonates (JAs) and salicylic acid (SA) in wounding response were investigated. Pea (Pisum sativum L.) seedlings were treated with three different methods including mechanical wounding, JAs application, and SA application. The contents of endogenous JAs and SA, as well as the activities of the related enzymes were detected by enzyme-linked immunosorbent assay (ELISA), high performance liquid chromatography (HPLC), and spectrophotometer, respectively. The results showed that endogenous JA rapidly accumulated within 30 min after wounding. The increase in the activities of both lipoxygenase (LOX) and allene oxide synthase (AOS) lagged behind JAs burst. A second slight increase in JAs level was observed at 24 h after wounding treatment, and at the same time point, higher activities of LOX and AOS were also detected. Endogenous free SA content decreased accompanied with JAs burst. Effects of exogenous JA application were similar to those of wounding treatment on endogenous SA level and phenylalanine ammonia lyase (PAL) activity, whereas exogenous SA application led to the significant inhibition of LOX and AOS activities and the decrease of endogenous JAs level at the early stage of treatment. It is thus suggested that JAs burst and SA decrease in early response to wounding may constitute an important mechanism by which plant starts the related defense reaction and adapts to wounding stress.
基金supported by funding from the China Agriculture Research System(CARS-24)the Heilongjiang Province Outstanding Youth Science Fund(JC201316)
文摘We evaluated the biomass and ergosterol content of Hericium erinaceus mycelium, and extracellular enzyme activities in H. erinaceus liquid culture following salicylic acid(SA) and methyl jasmonic acid(Me JA)supplementation. The optimal SA concentration was100 lmoláL-1, where the highest ergosterol content of 2.33 mgág-1was obtained following 6-day cultivation with100 lmoláL-1SA supplementation, and which was significantly higher than the unsupplemented control(p / 0.01). Following 4-day supplementation with50 lmoláL-1Me JA, the highest ergosterol content obtained was 1.988 mgág-1, which was 25.8 % higher than the unsupplemented control. Our data indicate that SA and Me JA supplementation improves ergosterol content in H.erinaceus mycelium.
基金Supported by The Key Project of Science and Technology of HenanProvince(102102110040)Innovation Scientists and the Innovation Fund for Outstanding Scholars of Henan Province(104200510013)~~
文摘[Objective] This study was carried out to determine the induction effect of jasmonic acid(JA)on powdery mildew resistance in wheat,the activation effect on the expressions of plant disease resistance related genes,and to investigate the relationship between the induced resistance and the gene expression patterns.[Method] Three powdery mildew susceptible cultivars of "Chinese Spring","Pumai 9" and "Zhoumai 18" typically representing different phenotypes in the field were employed.The powdery mildew was assessed by detached leaf assay,and real time quantitative RT-PCR was used to determine the expression patterns of 9 disease resistance related genes of PR1(PR1.1),PR2(β,1-3 glucanase),PR3(chitinase),PR4(wheatwin1),PR5(thaumatin-like protein),PR9(TaPERO,peroxidase),PR10,TaGLP2a(germin-like)and Ta-JA2(jasmonate-induced protein)in leaf of the three cultivars.[Result] MeJA application enhanced the powdery mildew resistances of "Chinese Spring","Pumai 9" and "Zhoumai 18".The induced powdery mildew resistance could be detected from 12 h to 96 h after MeJA treatment,and the peak value was at 24 h.Though there were differences between the three cultivars,MeJA significantly effect on the expressions of the 8 disease resistance related genes except TaGLP2a,and the peak values were at 12 h,24 h or 48 h after treatments.The strongest activation of MeJA was on PR9 and PR1 that their expressions could reach more than 100 times of the untreated samples.MeJA strongly activated PR2、PR4、PR5、PR3、PR10 and Ta-JA2,their expression could reach 10 to 70 times,and there was almost no activation effect on TaGLP2a.The induced powdery mildew resistance positively correlated with the induced expressions of the 8 disease related genes.[Conclusion] The induced powdery mildew resistance positively correlated with the induced expressions of the disease related genes.Jasmonate signalling plays a role in defence against Blumeria graminis f.sp.tritici.and future manipulation of this pathway may improve powdery mildew resistance in wheat.
文摘The relationship between the effect of exogenous jasmonic acid (JA) on the induction of secondary laticifer differentiation and the distribution of JA in the seedling of Hevea brasiliensis Mull. Arg. was investigated with the aid of experimental morphological and radioisotope technique. Most radioactivity of H-3-JA sustained in treated site within one hour while no radioactivity was detected in new shoot and the radioactivity in upper leaf was much less than that in the parts below the treated site, suggesting that JA was mainly transported downwards in the shoot of H brasiliensis. Mechanical wounding hindered the entrance of exogenous JA remarkably while held back the entered JA to the regions around wounded site. The effect of exogenous JA and mechanical wounding on the induction of the secondary laticifer differentiation was limited to treated site where high level of JA was expected. Mechanical wounding reduced the effect of exogenous JA on the differentiation of secondary laticifer, which could be ascribed to the hindrance of mechanical wounding to the entrance of exogenous JA. It was concluded from the combined data that a high accumulation of JA was required for inducing the secondary laticifer differentiation in H. brasiliensis.
文摘Exogenous jasmonic acid (JA) has been showed to be able to induce stomatal closure in Vicia faba L. in previous investigations. The transport and distribution of 3H-JA affected by localized scorch on V. faba seedling were studied with radioisotope technique. The results showed that 3H-JA could be transported up or down at the rate of 4-5 cm·min -1 following feeding into root or shoot tip. The transport of 3H-JA in shoot reached a relative stable rate at 30 min after being fed through root. Wounding by scorch in the youngest leaf caused an increase in the transport of 3H-JA from root to shoot and enhanced the distribution of 3H-JA in the wounded leaf. However, distribution of 3H-JA in unwounded leaves increased after 5 h being fed through the youngest leaf. It was noticed that wounding improved accumulation of 3H-JA in abaxial epidermis. Consistent results were obtained: wounding prevented transport of 3H-JA out from the youngest leaf to root; These observations suggest that JA plays an important role as a defense signal and might be involved in the regulation of the stomatal movement in response to wounding stress.
基金Supported by Beijing Nature Science Foundation(5102015)~~
文摘[Objective]The aim was to explore the molecular mechanism of plant resistance to various stress response.[Method]The expression of LeWRKY1 in tomato seedlings under treatment with B.cinerea,exogenous JA and SA were explored by real time quantitative RT-PCR technology.[Result]JA induced the expression of LeWRKY1,but SA did not.LeWRKY1 expression was up-regulated under B.cinerea infection.[Conclusion]LeWRKY1 might be involved in the tomato defense response to B.cinerea through JA dependent but SA independent signal pathway.
基金Supported by Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality(PXM2006-014207-021798)Project of Organization Department of Beijing Municipal Party(20042D0502108)~~
文摘[Objective] This experiment aimed to evaluate the effects of calcium and Jasmonic acid(JA) on the expression of CBF in spinach. [Methods] The seedlings of spinach were treated with low temperature (4 ℃), JA or A23187, then used for detecting the expression of CBF by northern blotting. [Results] The results showed that the CBF expression was regulated by low temperature and JA positively. [Conclusions] Low temperature may increase the JA content of the cell firstly, then JA induced the increase of cytosolic calcium concentration ([Ca2+]cyt), and the JA induced Ca2+ transmitted the low temperature signal through CaM or CaM related proteins, regulating the CBF expression.
基金Supported by National Natural Science Foundation of China(30700428,30911130166)Natural Science Foundation of Beijing Municipality(5072009)The New Star Plan of Science and Technology in Beijing Municipality(2006B26)~~
文摘[Objective] This study was to investigate the role of IP3 sensitive calcium channel in the JA-induced calcium mobilization pathway.[Method] Arabidopsis thaliana leaves were labeled by Fluorescent probe Fluo-3/AM under low temperature at 4 ℃ to measure the fluorescent intensity of intracellular Ca2+ which was pretreated with heparin on jasmonic acid(JA)-induced.[Results] When A.thaliana leaf cells were pretreated with 10,50 or 100 ng/ml heparin,intercellular free Ca2+ fluorescence intensity was reduced in comparison with negative control.Once the heparin-pretreated A.thaliana leaf cells were stimulated with 100 μmol/L JA,intercellular Ca2+ fluorescence intensity increased gradually and tended to be stable at a degree equivalent with that in negative control.[Conclusion] The experiment showed that the pretreatment with heparin could inhibit the increase of the intracellular Ca2+ concentration significantly which JA-induced in leaves of Arabidopsis thaliana.
基金Acknowledgments We are grateful to Dr Xinnian Dong (Duke University, Durham, NC, USA) for critical reading of the manuscript and valuable suggestions. We thank Dr Jianmin Zhou (National Institute of Biological Sciences, Beijing, China) for providing the fungus strain Botrytis cinerea, Dr Salome Prat (Institut de Biologia Molecular de Barcelona, Barcelona, Spain) for providing homozygous atmyc2-2 (T-DNA insertion line SALK_083483) seeds and Dr Daoxin Xie (Tsinghua University, Beijing, China) for providing the coil-I seeds. This work was supported by grants from The National Natural Science Foundation of China (30530440), The Ministry of Science and Technology of China (2006CB 102004, 2006AA10A 116), and The Chinese Academy of Sciences (KSCX2-YW-N-045).
文摘Jasmonic acid (JA) is an important phytohormone that regulates plant defense responses against herbivore attack, pathogen infection and mechanical wounding. In this report, we provided biochemical and genetic evidence to show that the Arabidopsis thaliana NAC family proteins ANAC019 and ANAC055 might function as transcription activators to regulate JA-induced expression of defense genes. The role of the two NAC genes in JA signaling was examined with the anacO19 anac055 double mutant and with transgenic plants overexpressing ANACO19 or ANAC055. The anacO19 anac055 double mutant plants showed attenuated JA-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) and LIPOXYGENASE2 (LOX2) expression, whereas transgenic plants overexpressing the two NAC genes showed enhanced JA-induced VSP1 and LOX2 expression. That the JA-induced expression of the two NAC genes depends on the function of COIl and AtMYC2, together with the finding that overexpression of ANACO19 partially rescued the JA-related phenotype of the atmyc2-2 mutant, has led us to a hypothesis that the two NAC proteins act downstream of AtMYC2 to regulate JA-signaled defense responses. Further evidence to substantiate this idea comes from the observation that the response of the anacO19 anac055 double mutant to a necrotrophic fungus showed high similarity to that of the atmyc2-2 mutant.
基金We gratefully acknowledge Dr Jianru Zuo (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, China) for providing T-DNA mutagenized population of Arabidopsis, Dr Salome Prat (Institut de Biologia Molecular de Barcelona, Spain) for providing homozygous atmyc2-2 mutant (T-DNA insertion line SALK_083483) seeds and Dr Jane Glazebrook for assisting with camalexin measurements. This work was supported by grants from the Chinese Academy of Sciences (KSCX2- YW-N-045, KSCX2-YW-N-015), the Ministry of Agriculture of China (2008ZX08009-003-001) and the Ministry of Science and Technology of China (2007CB948201, 2006AA10A116). Work in the laboratory of Jerry D Cohen was supported by grants from the US National Science Foundation (MCB-0725149 and DBI- PGRP-0606666) and the USDA, National Research Initiative (2005-35318-16197).
文摘Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies have established that JA also performs a critical role in several aspects of plant development. Here, we describe the characterization of the Arabidopsis mutantjasmonic acid-hypersensitivel-1 (jah1-1), which is defective in several aspects of JA responses. Although the mutant exhibits increased sensitivity to JA in root growth inhibition, it shows decreased expression of JA-inducible defense genes and reduced resistance to the necrotrophic fungus Botrytis cinerea. Gene cloning studies indicate that these defects are caused by a mutation in the cytochrome P450 protein CYP82C2. We provide evidence showing that the compromised resistance of thejah1-1 mutant to B. cinerea is accompanied by decreased expression of JA-induced defense genes and reduced accumulation of JA-induced indole glucosinolates (IGs). Conversely, the enhanced resistance to B. cinerea in CYP82C2-overexpressing plants is accompanied by increased expression of JA-induced defense genes and elevated levels of JA-induced IGs. We demonstrate that CYP82C2 affects JA-induced accumulation of the IG biosynthetic precursor tryptophan (Trp), but not the JA-induced IAA or pathogen-induced camalexin. Together, our results support a hypothesis that CYP82C2 may act in the metabolism of Trp-derived secondary metabolites under conditions in which JA levels are elevated. Thejah1-1 mutant should thus be important in future studies toward understanding the mechanisms underlying the complexity of JA-mediated differential responses, which are important for plants to adapt their growth to the ever-changing environments.
基金supported by the National Key Research and Development Program of China(2016YFD0300107)the National Natural Science Foundation of China(31771693,U1803235)+3 种基金the Fundamental Research Funds for the Central Universities(KYZ201807)the China Agricultural Research System(CARS-03)the Jiangsu Collaborative Innovation Center for Modern Crop Production(JCIC-MCP)the 111 Project(B16026)。
文摘Drought stress is a limiting factor for wheat production and food security.Drought priming has been shown to increase drought tolerance in wheat.However,the underlying mechanisms are unknown.In the present study,the genes encoding the biosynthesis and metabolism of abscisic acid(ABA)and jasmonic acid(JA),as well as genes involved in the ABA and JA signaling pathways were up-regulated by drought priming.Endogenous concentrations of JA and ABA increased following drought priming.The interplay between JA and ABA in plant responses to drought priming was further investigated using inhibitors of ABA and JA biosynthesis.Application of fluridone(FLU)or nordihydroguaiaretic acid(NDGA)to primed plants resulted in lower chlorophyll-fluorescence parameters and activities of superoxide dismutase and glutathione reductase,and higher cell membrane damage,compared to primed plants(PD)under drought stress.NDGA+ABA,but not FLU+JA,restored priming-induced tolerance,as indicated by a finding of no significant difference from PD under drought stress.Under drought priming,NDGA induced the suppression of ABA accumulation,while FLU did not affect JA accumulation.These results were consistent with the expression of genes involved in the biosynthesis of ABA and JA.They suggest that ABA and JA are required for priming-induced drought tolerance in wheat,with JA acting upstream of ABA.
基金supported by the National Natural Science Foundation of China (Grant No. 31561143006)Breeding Program of Shandong Province, China (Grant No. 2017LZGC001)Taishan Scholars Program of Shandong Province, China (Grant No. 2016-2020)
文摘In order to elucidate the contributions of JA in orchestrating disease resistance in potato plants,the potato genotype‘SD20’,which exhibits strong resistance against the highly virulent Phytophthora infestans isolate CN152,while infected by the super virulent isolate 2013-18-306,was treated with exogenous JA and then challenged by inoculation with 2013-18-306.The results showed that exogenously applied JA significantly delayed the onset and alleviated the symptoms of late blight,indicating exogenous JA could induce resistance to P.infestans in the early biotrophic stage of infection in‘SD20’plants.To further clarify the role of JA in the early defense response and identify key genes involved in JA signal transduction,gene expression profiling via RNA sequencing(RNA-seq)in‘SD20’plants treated with exogenously applied JA was performed.A total of 2927 differentially expressed genes were specifically induced,the majority encoded transcription factors,protein kinases,secondary metabolites,defense enzymes and disease resistance related proteins.GO functional annotation and KEGG metabolic pathway analysis showed that exogenously applied JA rapidly induced the expression of genes related to immune response regulation,pathogen defense,and other biological processes,and stimulated endogenous JA synthesis and signal transduction,and the overall early pathogen defense response in‘SD20’.These results provide useful information in understanding the JA’s function involved in pathogen defense responses and a theoretical basis for the application of JA in potato production.
文摘Jasmonates are class of plant growth regulators act as signal molecule that intercede various components in physiological and metabolic regulation, stress responses and possibly communication through signal transduction. Oxidative stress due to heavy metal exposure stimulates synthesis and activity of antioxidant metabolites and enhances antioxidant enzyme activities that could protect plant tissues. The aim of this study was to investigate the exogenous effect of JA at seed level which can transduce throughout seedling growth and regulate antioxidant activities such as superoxide dismutase (SOD;EC 1.15.1.1) and guaiacol peroxidase (POD;EC 1.11.1.7) in 12 days old seedlings of pigeon pea (Cajanus cajan (L.) Millsp.) in presence and/or absence of copper. The activity of SOD and POD increased significantly in presence of Cu2+ after seed priming with JA. JA also helps in chlorophyll and carotenoid accumulation and neutralizes the toxic effect of Cu2+ on seedlings. This is the first report of JA effect on photosynthetic pigment accumulation and H2O2 mitigating enzymes i.e. SOD and POD and it could be recommended that seed priming with JA help in ameliorating toxic effect of Cu2+.