期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
Experimental Investigation on Flow and Heat Transfer of Jet Impingement inside a Semi-Confined Smooth Channel 被引量:2
1
作者 张靖周 刘波 徐华胜 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第1期16-25,共10页
Experimental investigation is conducted to investigate the flow and heat transfer performances of jet impingement cooling inside a semi-confined smooth channel.Effects of jet Reynolds number(varied from 10 000to 45000... Experimental investigation is conducted to investigate the flow and heat transfer performances of jet impingement cooling inside a semi-confined smooth channel.Effects of jet Reynolds number(varied from 10 000to 45000),orifice-to-target spacing(zn=1d—4d)and jet-to-jet pitches(xn=3d—5d,yn=3d—5d)on the convective heat transfer coefficient and discharge coefficient are revealed.For a single-row jets normal impingement,the impingement heat transfer is enhanced with the increase of impingement Reynolds number or the decrease of spanwise jet-to-jet pitch.The highest local heat transfer is achieved when zn/dis 2.For the double-row jets normal impingement,the laterally-averaged Nusselt number distributions in the vicinity of the first row jets impinging stagnation do not fit well with the single-row case.The highest local heat transfer is obtained when zn/dis 1.A smaller jetto-jet pitch generally results in a lower discharge coefficient.The discharge coefficient in the double-row case is decreased relative to the single-row case at the same impingement Reynolds number. 展开更多
关键词 jet impingement semi-confined channel convective heat transfer discharge coefficient
下载PDF
Combined effects of local curvature and elasticity of an isothermal wall for jet impingement cooling under magnetic field effects 被引量:1
2
作者 SELİMEFENDİGİL Fatih ÇOĞAN Mehmet ÖZTOP Hakan F. 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3534-3544,共11页
The aim of this study is to examine the effects of local curvature and elastic wall effects of an isothermal hot wall for the purpose of jet impingement cooling performance.Finite element method was used with ALE.Diff... The aim of this study is to examine the effects of local curvature and elastic wall effects of an isothermal hot wall for the purpose of jet impingement cooling performance.Finite element method was used with ALE.Different important parametric effects such as Re number(between 100 and 700),Ha number(between 0 and 20),elasticity(between 104 and 109),curvature of the surface(elliptic,radius ratio between 1 and 0.25) and nanoparticle volume fraction(between 0 and 0.05) on the cooling performance were investigated numerically.The results showed that the average Nu number enhances for higher Hartmann number,higher values of elastic modulus of partly flexible wall and higher nanoparticle volume fraction.When the magnetic field is imposed at the highest strength,there is an increase of3.85% in the average Nu for the curved elastic wall whereas it is 89.22% for the hot part above it,which is due to the vortex suppression effects.Nanoparticle inclusion in the base fluid improves the heat transfer rate by about 27.6% in the absence of magnetic field whereas it is 20.5% under the effects of magnetic field at Ha=20.Curvature effects become important for higher Re numbers and at Re=700,there is 14.11% variation in the average Nu between the cases with the lowest and highest radius ratio.The elastic wall effects on the heat transfer are reduced with the increased curvature of the bottom wall. 展开更多
关键词 jet impingement nanoparticles elastic wall MHD CFD curved wall
下载PDF
Planar collisionless jet impingement on a specular reflective plate 被引量:1
3
作者 Chunpei Cai Chun Zou 《Theoretical & Applied Mechanics Letters》 CAS 2012年第2期41-45,共5页
This paper presents a fundamental gas-kinetic study on a high speed planar rarefied jet impinging on a flat plate of specular reflections. Based on previous collisionless planar free jet results, it is straightforward... This paper presents a fundamental gas-kinetic study on a high speed planar rarefied jet impinging on a flat plate of specular reflections. Based on previous collisionless planar free jet results, it is straightforward to obtain jet impingement flowfield solutions, and jet impingement for specular reflective plate surface properties. Several direct simulation Monte Carlo simulation results are provided and they validate these analytical solutions of rarefied planar jet flows. The results can find applications in many disciplines, such as materials processing, molecular beams, and space engineering. 展开更多
关键词 rarefied flows jet impingement VACUUM Monte Carlo method
下载PDF
CFD study of turbulent jet impingement on curved surface
4
作者 Javad Taghinia Md Mizanur Rahman Timo Siikonen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第5期588-596,共9页
The heat transfer and flow characteristics of air jet impingement on a curved surface are investigated with computational fluid dynamics(CFD)approach.The first applied model is a one-equation SGS model for large eddy ... The heat transfer and flow characteristics of air jet impingement on a curved surface are investigated with computational fluid dynamics(CFD)approach.The first applied model is a one-equation SGS model for large eddy simulation(LES)and the second one is the SST-SAS hybrid RANS-LES.These models are utilized to study the flow physics in impinging process on a curved surface for different jet-to-surface(h/B)distances at two Reynolds numbers namely,2960 and 4740 based on the jet exit velocity(U_e)and the hydraulic diameter(2B).The predictions are compared with the experimental data in the literature and also the results from RANS k-εmodel.Comparisons show that both models can produce relatively good results.However,one-equation model(OEM)produced more accurate results especially at impingement region at lower jet-to-surface distances.In terms of heat transfer,the OEM also predicted better at different jet-to-surface spacings.It is also observed that both models show similar performance at higher h/B ratios. 展开更多
关键词 jet impingement Curved surface RAST one-equation model Large eddy simulation Heat transfer
下载PDF
Experimental Study of Heat Transfer for a Rotating Cylinder Water Jet Impingement Quenching
5
作者 Mozumder Aloke Kumar Mitsutake Yuichi Monde Masanori 《Journal of Energy and Power Engineering》 2013年第3期411-422,共12页
Transient heat transfer has been experimentally investigated for subcooled water jet impingement quenching of a hot rotating stainless steel cylinder. Temperatures beneath the impinged surface were measured during que... Transient heat transfer has been experimentally investigated for subcooled water jet impingement quenching of a hot rotating stainless steel cylinder. Temperatures beneath the impinged surface were measured during quenching and used to estimate surface temperature and surface heat flux by using a developed numerical inverse solution of heat conduction. Heat flux reached its maximum value just after the WF (wetting front) (visible leading edge of boiling region) started moving from stagnation towards the circumferential region. WF moved in a non-uniform manner in angular direction on the hot rotating surface. With the increase of surface velocity, heat flux decreased. Higher surface velocity moved away the produced vapor bubbles and reduced the solid-liquid contact time which made it one-dimensional heat conduction from multi-dimensional, that reduced heat flux. The generated boiling curve from the estimated heat flux showed a reasonable agreement with existing studies. The surface maximum heat flux (maximum value in each cycle) distribution trend with radial position is entirely comparable with the static surface critical heat flux in literature. An explosive to a sheet like flow patterns were observed with the decrease of surface temperature. The flow patterns were followed by the intensity of sound during quenching. 展开更多
关键词 Heat conduction inverse solution jet impingement.
下载PDF
Effects of using sinusoidal porous object(SPO)and perforated porous object(PPO)on the cooling performance of nano-enhanced multiple slot jet impingement for a conductive panel system
6
作者 Fatih Selimefendigil Faiza Benabdallah +3 位作者 Kaouther Ghachem Hind Albalawi Badr MAlshammari Lioua Kolsi 《Propulsion and Power Research》 SCIE 2024年第2期166-177,共12页
Cooling system design for thermal management of electronic equipment,batteries and photovoltaic(PV)modules is important for increasing the efficiency,safety operation,and long life span the products.In the present stu... Cooling system design for thermal management of electronic equipment,batteries and photovoltaic(PV)modules is important for increasing the efficiency,safety operation,and long life span the products.In the present study,two different cooling systems are proposed with nano-enhanced multiple impinging jets for a conductive panel.The present cooling systems can be used in electronic cooling and PV modules.Perforated porous object(PPO)and sinusoidal porous object(SPO)are used in the jet cooling system.2D numerical analysis usingfinite volume method is conducted considering different values of permeability of the objects(Darcy number(Da)between 10^(-6) and 10^(-1)).When PPO is used in the cooling system,num-ber of cylinders(between 1 and 6),and size of the cylinders(between 0.015 and 0.075)are considered.In the case of using SPO,amplitude(between 0.1 and 2)and wave number(be-tween 1 and 12)are varied.Alumina-water nanofluid with cylindrical shaped nanoparticles is used as the heat transferfluid.When permeability is changed for PPO,the average temper-ature increases by roughly 3.89℃ for a single cylinder and drops by roughly 0.57℃ for a six-cylinder cases.Increasing the size of the cylinder in the PPO case at highest permeability results in temperature drop of 5.3℃.When changing the number of cylinders,cooling rate varies by about 3.6%.Wave number of SPO is more influential on the cooling performance enhancement as compared to amplitude and permeability of the SPO.The average surface temperature drops by 12.4℃ when the wave number is increased to 12.As compared to reference case of jet impingement cooling without porous object,using PPO and SPO along with the nanofluid result in temperature drop of 12.3℃ and 14.4℃. 展开更多
关键词 Thermal management jet impingement Perforated porous
原文传递
Experimental study on heat transfer enhancement of square-array jet impingement by using an integrated synthetic jet actuator
7
作者 TAN JunWen LYU YuanWei +1 位作者 ZHANG JingZhou ZHANG JingYang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第12期3439-3449,共11页
A novel concept is proposed in the present study for improving the square-array jet impingement heat transfer by integrating a synthetic jet actuator into the array unit.To illustrate the potential of this concept,an ... A novel concept is proposed in the present study for improving the square-array jet impingement heat transfer by integrating a synthetic jet actuator into the array unit.To illustrate the potential of this concept,an experimental investigation is performed,wherein two jet Reynolds numbers(Re=3000 and 5000),three hole-to-hole pitches(X/d=Y/d=4,5 and 6),and three impinging distances(H/d=2,6 and 10)are considered while the synthetic jet is actuated at a fixed frequency of 180 Hz with a characteristic Reynolds number(Re_(0))of about 2430.The results show that the synthetic jet has rare influence on the stagnation heat transfer of square-array jet but effectively improves the local heat transfer at the central zone of array unit.Its potential is tightly dependent on the array layout,Reynolds number and impinging distance.In general,the spatially-averaged Nusselt number augment behaves more significantly for the situations with smaller jet Reynolds number and bigger impinging distance. 展开更多
关键词 jet impingement heat transfer enhancement square-array jet synthetic jet actuator
原文传递
Numerical Investigation of Jet Impingement Cooling with Supercritical Pressure Carbon Dioxide in a Multi-Layer Cold Plate during High Heat Flux
8
作者 WEN Yaming LI Yulong +1 位作者 LI Jingqi YU Xin-Gang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期237-253,共17页
Jet impingement cooling with supercritical pressure carbon dioxide in a multi-layer cold plate during the heat flux of 400 W/cm_(2) is investigated numerically.The generation and distribution of pseudocritical fluid w... Jet impingement cooling with supercritical pressure carbon dioxide in a multi-layer cold plate during the heat flux of 400 W/cm_(2) is investigated numerically.The generation and distribution of pseudocritical fluid with the high specific heat of supercritical pressure carbon dioxide and the mechanism of the heat transfer enhancement led by the high specific heat are analyzed.For a given nozzle diameter,the effects of the geometric parameters of a multi-layer cold plate such as the relative nozzle-to-plate distance,relative plate thickness,and relative upper fluid thickness on the average heat transfer coefficient are studied.The results show that the target surface is cooled effectively with supercritical pressure carbon dioxide jet impingement cooling.When the radial distance is less than 6 mm,the maximum wall temperature is 368 K,which is 30 K lower than the maximum junction temperature for a silicon-based insulated gate bipolar transistor,a typical electronic power device.There is a pseudocritical fluid layer near the target surface,where specific heat reaches above 34 kJ/(kg·K)locally.The drastic rise of the specific heat leads to obvious heat transfer enhancement.Within a certain range,the local heat transfer coefficient and the specific heat are linearly correlated and Stanton number remains constant over this range.The heat transfer coefficient is at a maximum when the relative nozzle-to-plate distance is 1.As the relative plate thickness increases from 0.5 to 3.5 or the relative upper fluid thickness increases from 0.5 to 2.5,the average heat transfer coefficient decreases monotonically. 展开更多
关键词 high heat flux jet impingement cooling supercritical pressure carbon dioxide heat transfer enhancement
原文传递
CONVEXITY OF THE FREE BOUNDARY FOR AN AXISYMMETRIC INCOMPRESSIBLE IMPINGING JET
9
作者 王晓慧 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期234-246,共13页
This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provi... This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provided that the uneven ground is concave to the fluid. 展开更多
关键词 Euler system axisymmetric impinging jet INCOMPRESSIBLE free boundary CONVEXITY
下载PDF
Numerical study of flow and thermal characteristics of pulsed impinging jet on a dimpled surface
10
作者 Amin Bagheri Kazem Esmailpour Morteza Heydari 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期106-117,共12页
This research comprehensively investigates the flow and thermal characteristics of a pulsating impinging jet over a dimpled surface.It analyzes the impact of key parameters(e.g.,inlet velocity pulsation functions,puls... This research comprehensively investigates the flow and thermal characteristics of a pulsating impinging jet over a dimpled surface.It analyzes the impact of key parameters(e.g.,inlet velocity pulsation functions,pulsation frequency,amplitude,dimple pitch,dimple depth,Reynolds number)on flow patterns and heat transfer.Validated computational fluid dynamics and the Re-normalization group turbulence model are employed to accurately simulate complex turbulent flow behavior.Local and average heat transfer coefficients are calculated and compared to steady impingement cases,revealing the potential benefits of pulsation for heat transfer enhancement.The study also examines how pulsation-induced flow modulation and thermal mixing affect heat transfer mechanisms.Results indicate that combining fluctuating flow with a dimpled surface can improve heat transfer rates.In summary,increasing pulsation amplitude consistently enhances heat transfer,while the effect of frequency varies between impinging and wall jet zones. 展开更多
关键词 Pulsating impinging jet Dimpled surface Heat transfer enhancement Pulsation frequency and amplitude Coherent structures
下载PDF
Experimental study of curvature effects on jet impingement heat transfer on concave surfaces 被引量:6
11
作者 Zhou Ying Lin Guiping +2 位作者 Bu Xueqin Bai Lizhan Wen Dongsheng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第2期586-594,共9页
Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects.The expe... Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects.The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters:jet Reynolds number from 27000 to 130000,relative nozzle to surface distance from 3.3 to 30,and relative surface curvature from 0.005 to 0.030.Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics.On one hand,an increase of relative nozzle to surface distance(increasing jet diameter in fact)enhances the average heat transfer around the surface for the same curved surface.On the other hand,the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter.Finally,experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect.This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces,which is of high importance to the design of the aircraft anti-icing system. 展开更多
关键词 Anti-icing system Concave surface Curvature effect Heat transfer jet impingement
原文传递
Experimental investigation and correlation development of jet impingement heat transfer with two rows of aligned jet holes on an internal surface of a wing leading edge 被引量:7
12
作者 Jia YU Long PENG +3 位作者 Xueqin BU Xiaobin SHEN Guiping LIN Lizhan BAI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第10期1962-1972,共11页
Extensive experimental studies on the heat transfer characteristics of two rows of aligned jet holes impinging on a concave surface in a wing leading edge were conducted, where50000 Rej 90000, 1.74 H/d 27.5, 66° ... Extensive experimental studies on the heat transfer characteristics of two rows of aligned jet holes impinging on a concave surface in a wing leading edge were conducted, where50000 Rej 90000, 1.74 H/d 27.5, 66° a 90°, and 13.2 r/d 42.03. The finding was that the heat transfer performance at the jet-impingement stagnation point with two rows of aligned jet holes was the same as that with a single row of jet holes or the middle row of three-row configurations when the circumferential angle of the two jet holes was larger than 30°. The attenuation coefficient distribution of the jet impingement heat transfer in the chordwise direction was so complicated that two zones were divided for a better analysis. It indicated that: the attenuation coefficient curve in the jet impingement zone exhibited an approximate upside-down bell shape with double peaks and a single valley; the attenuation coefficient curve in the non-jet impingement zone was like a half-bell shape, which was similar to that with three rows of aligned jet holes; the factors,including Rej, H/d and r/d, affected the attenuation coefficient value at the valley significantly.When r/d was increased from 30.75 to 42.03, the attenuation rates of attenuation coefficient increased only by 1.8%. Consequently, experimental data-based correlation equations of the Nusselt number for the heat transfer at the jet-impingement stagnation point and the distributionof the attenuation coefficient in the chordwise direction were acquired, which play an important role in designing the wing leading edge anti-icing system with two rows of aligned jet holes. 展开更多
关键词 CORRELATION Experiment jet impingement heat transfer Two rows of aligned jet holes Wing anti-icing
原文传递
Experimental investigation on heat transfer characteristics of microcapsule phase change material suspension in array jet impingement 被引量:4
13
作者 ZHANG JiaJie CHEN YanWei +3 位作者 LIU Yang LI Huan ZHAO Rui JIN ZhaoGuo 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第7期1634-1645,共12页
A closed-loop experimental system is established to investigate the heat transfer characteristics of microcapsule phase change material(MEPCM) suspension in an array jet impingement. Eicosane with a melting peak at 4... A closed-loop experimental system is established to investigate the heat transfer characteristics of microcapsule phase change material(MEPCM) suspension in an array jet impingement. Eicosane with a melting peak at 40.8℃ is used as the capsule core of the MEPCM particle. Five kinds of array-hole nozzles with the same hole cross-sectional area are employed to analyze the influence of critical parameters, including the nozzle hole number, hole spacing, impinging distance, and jet temperature. It shows that a 5% suspension may improve the heat transfer coefficient of the array jet by up to 23.5% compared with water. The heat transfer of an array jet is obviously stronger than that of a single jet, but too much hole number is not conducive because of the entrainment interference between adjacent jets. A larger hole spacing or smaller impinging distance may weaken the crossflow accumulation on the impinged surface, thus enhancing the heat transfer capability. The heat transfer coefficient of the array jet presents a secondary peak value at the end of the jet-core region. The latent heat absorption of the capsule core results in superior heat transfer of the suspension compared to that of water only in a specific range of jet temperatures, the optimum of which is approximately 10℃ lower relative to the peak melting temperature. In addition, the melt completion time of a single MEPCM particle and the critical flow rate of the suspension are predicted theoretically. 展开更多
关键词 MEPCM suspension array jet impingement hole spacing CROSS-FLOW jet temperature
原文传递
Experimental Study on Jet Impingement Boiling Heat Transfer in Brass Beads Packed Porous Layer 被引量:3
14
作者 ZHANG Yunsong CHEN Wei 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第3期718-729,共12页
Jet impingement boiling has been widely used in industrial facilities as its higher heat transfer coefficient(HTC)and critical heat flux(CHF)can be achieved in comparison with the pool boiling.By covering beads packed... Jet impingement boiling has been widely used in industrial facilities as its higher heat transfer coefficient(HTC)and critical heat flux(CHF)can be achieved in comparison with the pool boiling.By covering beads packed porous layer on the heated wall surface,the enlarged heat transfer area and rise of nucleation sites for boiling occur,thus,the heat transfer performance of boiling can be enhanced.For the jet impingement boiling with brass bead packed porous layers,the heat transfer performance is crucially influenced by the characteristics of porous layer and working fluid flow,so the experiments were conducted to investigate the effects of the jet flow rate,fluid inlet subcooling,number of porous layer and brass bead diameter of porous layer.Comparison study shows that impingement boiling promotes the HTC and CHF as 1.5 times and 2.5 times respectively as pool boiling at similar conditions.Higher heat transfer performance can be obtained in the cases of a higher jet flow rate and a higher fluid inlet subcooling,and there exist the optimal layer number and bead diameter for heat transfer.Particularly,a double-layer porous layer results in an increase of 39%in heat flux at superheat of 30 K compared with a single-layer case;a single porous layer at d=8 mm brings an increase of 23%in heat flux at superheat of 30 K compared with that of bare plain surface.Besides,the actual scene of jet impingement boiling was recorded with a camera to investigate the behavior evolution of vapor bubbles which is highly correlated to the heat transfer process. 展开更多
关键词 jet impingement nucleate boiling beads packed porous layer heat transfer coefficient critical heat flux
原文传递
3-D NUMERICAL COMPUTATION OF JET ARRAY IMPINGEMENT WITH INITIAL CROSSFLOW 被引量:2
15
作者 LIYong-kang ZHANGJing-zhou TANXiao-ming 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第2期128-133,共6页
The 3-D numerical computation of the flow and temperature fields for jet array impingement with initial crossflow investigates the effects of the jet-to-surface spacing, the impinging hole arrangement and the jet-to-c... The 3-D numerical computation of the flow and temperature fields for jet array impingement with initial crossflow investigates the effects of the jet-to-surface spacing, the impinging hole arrangement and the jet-to-crossflow mass flux ratio on heat transfer characteristics. The study shows that: (1) under the different jet-to-surface spacing, the impingement cooling with inline arrangement is better than that with staggered arrangement for a given jet-to-crossflow mass flux ratio;( 2 ) the value of jet-to-surface spacing impacts a complicated effect on the flow and heat transfer for jet array impingement; (3) as the ratio of crossflow-to-jet mass flux ratio increases, the cooling effectiveness on monotonous decrease for both inline and staggered arrangements at the same jet-to-surface spacing. 展开更多
关键词 jet impingement numerical calculation enhanced heat transfer
下载PDF
Modeling and Simulation of a Hybrid Jet-Impingement/Micro-Channel Heat Sink
16
作者 Taidong Xu Hao Liu +2 位作者 Dejun Zhang Yadong Li Xiaoming Zhou 《Fluid Dynamics & Materials Processing》 EI 2021年第1期109-121,共13页
With the progressive increase in the number of transistors that can be accommodated on a single integrated circuit,new strategies are needed to extract heat from these devices in an efficient way.In this regard method... With the progressive increase in the number of transistors that can be accommodated on a single integrated circuit,new strategies are needed to extract heat from these devices in an efficient way.In this regard methods based on the combination of the so-called“jet impingement”and“micro-channel”approaches seem extremely promising for possible improvement and future applications in electronics as well as the aerospace and biomedical fields.In this paper,a hybrid heat sink based on these two technologies is analysed in the frame of an integrated model.Dedicated CFD simulation of the coupled flow/temperature fields and orthogonal tests are performed in order to optimize the overall design.The influence of different sets of structural parameters on the cooling performance is examined.It is shown that an optimal scheme exists for which favourable performance can be obtained in terms of hot spot temperature decrease and thermal uniformity improvement. 展开更多
关键词 jet impingement MICRO-CHANNEL heat sink numerical simulation orthogonal test
下载PDF
Theoretical Analysis of Hydraulic Jump on ExtremelySmall Size Liquid Jet Impingement
17
作者 Dingwei Zhou Chongfang Ma Yutao Ren 《Journal of Thermal Science》 SCIE EI CAS CSCD 1998年第3期176-180,共5页
A theoretical study was conducted to characterize hydraulic jump of laminar circular liquid jets. The objective of this research was to determine the jump location in a simple explicit form. The effects of many factor... A theoretical study was conducted to characterize hydraulic jump of laminar circular liquid jets. The objective of this research was to determine the jump location in a simple explicit form. The effects of many factors were investigated including nozzle diameter, jet exit pressure, nozzle-to-plate spacing, jet velocity and Reynolds number. It was found that the theoretical data collapsed well over the range of jet Reynolds number 500 Re 1800 with previous data. 展开更多
关键词 hydraulic jump jet impingement theoretical analysis
原文传递
Three-dimensional Numerical Study of Laminar Confined Slot Jet Impingement Cooling using Slurry of Nano—encapsulated Phase Change Material
18
作者 M.Mohib Ur Rehman Z.G Qu R.P.Fu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第5期431-439,共9页
This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material(NEPCM... This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material(NEPCM)as a coolant.The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100 nm suspended in it.A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code.The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered.The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid.It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and C_m=0.28.However,due to the higher viscosity of slurry compared with the base fluid,the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number. 展开更多
关键词 Nano-encapsulated phase change material heat transfer enhancement confined slot jet impingement
原文传递
Gaskinetic Solutions for High Knudsen Number Planar Jet Impingement Flows
19
作者 Chunpei Cai Chun Zou 《Communications in Computational Physics》 SCIE 2013年第9期960-978,共19页
This paper presents a gaskinetic study and analytical results on high speed rarefied gas flows from a planar exit.The beginning of this paper reviews the results for planar free jet expanding into a vacuum,followed by... This paper presents a gaskinetic study and analytical results on high speed rarefied gas flows from a planar exit.The beginning of this paper reviews the results for planar free jet expanding into a vacuum,followed by an investigation of jet impingement on normally set plates with either a diffuse or a specular surface.Presented results include exact solutions for flowfield and surface properties.Numerical simulations with the direct simulation Monte Carlomethod were performed to validate these analytical results,and good agreement with this is obtained for flows at high Knudsen numbers.These highly rarefied jet and jet impingement results can provide references for real jet and jet impingement flows. 展开更多
关键词 Gaskinetic theory jet jet impingement Monte Carlo method
原文传递
NUMERICAL STUDY OF SEMI-CONFINED SLOT JET IMPINGEMENT
20
作者 Xu Jing lei, Xu Zhong, Huang Shu juan Department of Fluid Engineering, Energy and Power School,Xi′an Jiaotong University, Xi′an 710049, P.R.China (Received June 1, 1998) 《Journal of Hydrodynamics》 SCIE EI CSCD 1999年第3期14-18,共5页
The standard k ε turbulence model in conjunction with the logarithmic law of the wall has been applied to the prediction of a fully developed turbulent slot impinging jet within a semi confined space. A single geo... The standard k ε turbulence model in conjunction with the logarithmic law of the wall has been applied to the prediction of a fully developed turbulent slot impinging jet within a semi confined space. A single geometry with a Reynolds number of 10,000 and a nozzle to plate spacing of eight slot widths has been considered with inlet boundary conditions based on the previous calculated result of a fully developed turbulent 2 D flow. The numerical results of mean velocity agree with the experimental data. But the fluctuating velocity is somewhat poorly predicted. The difference between the numerical study and the experimental data is attributed directly to the turbulence model, and the application of the wall function. 展开更多
关键词 slot impinging jet TURBULENCE model wall function
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部