Extensive experimental studies on the heat transfer characteristics of two rows of aligned jet holes impinging on a concave surface in a wing leading edge were conducted, where50000 Rej 90000, 1.74 H/d 27.5, 66° ...Extensive experimental studies on the heat transfer characteristics of two rows of aligned jet holes impinging on a concave surface in a wing leading edge were conducted, where50000 Rej 90000, 1.74 H/d 27.5, 66° a 90°, and 13.2 r/d 42.03. The finding was that the heat transfer performance at the jet-impingement stagnation point with two rows of aligned jet holes was the same as that with a single row of jet holes or the middle row of three-row configurations when the circumferential angle of the two jet holes was larger than 30°. The attenuation coefficient distribution of the jet impingement heat transfer in the chordwise direction was so complicated that two zones were divided for a better analysis. It indicated that: the attenuation coefficient curve in the jet impingement zone exhibited an approximate upside-down bell shape with double peaks and a single valley; the attenuation coefficient curve in the non-jet impingement zone was like a half-bell shape, which was similar to that with three rows of aligned jet holes; the factors,including Rej, H/d and r/d, affected the attenuation coefficient value at the valley significantly.When r/d was increased from 30.75 to 42.03, the attenuation rates of attenuation coefficient increased only by 1.8%. Consequently, experimental data-based correlation equations of the Nusselt number for the heat transfer at the jet-impingement stagnation point and the distributionof the attenuation coefficient in the chordwise direction were acquired, which play an important role in designing the wing leading edge anti-icing system with two rows of aligned jet holes.展开更多
Mist jet impingement cooling is an enhanced heat transfer method widely used after the continuous galvanizing process. The key of a successful design and operation of the mist jet impingement cooling system lies in ma...Mist jet impingement cooling is an enhanced heat transfer method widely used after the continuous galvanizing process. The key of a successful design and operation of the mist jet impingement cooling system lies in mastering heat transfer coefficients. The heat transfer coefficients of high temperature steel plates cooled with multiple mist impinging jets were experimentally investigated, and the effects of gas and water flow rates on heat transfer coefficients were studied. The test results illustrate that the gas flow rate has little effect on the mist heat transfer rate. It is also found that the water flow rate has a great impact on the heat transfer coefficient. When the water flow rate ranges from 0.96m3/h to 1.59 m3/h, an increase in the rate will produce a higher heat transfer coefficient with a maximum of 5650 W/(m2 · K). Compared with the conventional gas jet cooling, the heat transfer coefficient of the mist jet cooling will be much higher, which can effectively strengthen the after-pot cooling.展开更多
The multiple jets impingement heat transfer is widely applied in the wing anti-icing system.It is challenging to apply the similarity criterion to carry out the anti-icing experiments due to the complex flow and heat ...The multiple jets impingement heat transfer is widely applied in the wing anti-icing system.It is challenging to apply the similarity criterion to carry out the anti-icing experiments due to the complex flow and heat transfer behavior.In the present study,the full-scale slat model is used to carry out anti-icing experimental researches in a 2 m×3 m icing wind tunnel of China Aerodynamics Research and Development Center.The effects of icing parameters Liquid Water Content(LWC)and Median Volume Diameter(MVD)and hot air parameters(mass flow rate and temperature)on the thermal performance of an inner-liner anti-icing system with jets impingement heat transfer are studied.The effects of the experimental parameters are analyzed in detail by combining impingement and evaporation heat transfer mechanisms.The impingement hot air mass flow rate dramatically affects the heat transfer performance of the impingement stagnation region within the range of the experimental parameters.The temperature of impingement hot air and that of wing skin are approximately linear correlated.The experimental results show the effects of LWC and MVD on water film formation and runback ice accretion.The formation of water film is analyzed by an analytical method based on the wing skin temperature difference of dry and wet air conditions.展开更多
The combination of a microchannel heat sink with impinging jets and dimples(MHSIJD) can effectively improve the flow and heat transfer performance on the cooling surface of electronic devices with very high heat fluxe...The combination of a microchannel heat sink with impinging jets and dimples(MHSIJD) can effectively improve the flow and heat transfer performance on the cooling surface of electronic devices with very high heat fluxes. Based on the previous work by analysing the effect of dimple radius on the overall performance of MHSIJD, the effects of dimple height and arrangement were numerically analysed. The velocity distribution, pressure drop, and thermal performance of MHSIJD under various dimple heights and arrangements were presented. The results showed that: MHSIJD with higher dimples had better overall performance with dimple radius being fixed; creating a mismatch between the impinging hole and dimple can solve the issue caused by the drift phenomenon; the mismatch between the impinging hole and dimple did not exhibit better overall performance than a well-matched design.展开更多
基金supported by the National Natural Science Foundation of China (No. 51206008)
文摘Extensive experimental studies on the heat transfer characteristics of two rows of aligned jet holes impinging on a concave surface in a wing leading edge were conducted, where50000 Rej 90000, 1.74 H/d 27.5, 66° a 90°, and 13.2 r/d 42.03. The finding was that the heat transfer performance at the jet-impingement stagnation point with two rows of aligned jet holes was the same as that with a single row of jet holes or the middle row of three-row configurations when the circumferential angle of the two jet holes was larger than 30°. The attenuation coefficient distribution of the jet impingement heat transfer in the chordwise direction was so complicated that two zones were divided for a better analysis. It indicated that: the attenuation coefficient curve in the jet impingement zone exhibited an approximate upside-down bell shape with double peaks and a single valley; the attenuation coefficient curve in the non-jet impingement zone was like a half-bell shape, which was similar to that with three rows of aligned jet holes; the factors,including Rej, H/d and r/d, affected the attenuation coefficient value at the valley significantly.When r/d was increased from 30.75 to 42.03, the attenuation rates of attenuation coefficient increased only by 1.8%. Consequently, experimental data-based correlation equations of the Nusselt number for the heat transfer at the jet-impingement stagnation point and the distributionof the attenuation coefficient in the chordwise direction were acquired, which play an important role in designing the wing leading edge anti-icing system with two rows of aligned jet holes.
文摘Mist jet impingement cooling is an enhanced heat transfer method widely used after the continuous galvanizing process. The key of a successful design and operation of the mist jet impingement cooling system lies in mastering heat transfer coefficients. The heat transfer coefficients of high temperature steel plates cooled with multiple mist impinging jets were experimentally investigated, and the effects of gas and water flow rates on heat transfer coefficients were studied. The test results illustrate that the gas flow rate has little effect on the mist heat transfer rate. It is also found that the water flow rate has a great impact on the heat transfer coefficient. When the water flow rate ranges from 0.96m3/h to 1.59 m3/h, an increase in the rate will produce a higher heat transfer coefficient with a maximum of 5650 W/(m2 · K). Compared with the conventional gas jet cooling, the heat transfer coefficient of the mist jet cooling will be much higher, which can effectively strengthen the after-pot cooling.
基金co-supported by the National Numerical Wind Tunnel Project(No.NNW2018-ZT2B04)the “973”Program of China(No.2015CB755800)。
文摘The multiple jets impingement heat transfer is widely applied in the wing anti-icing system.It is challenging to apply the similarity criterion to carry out the anti-icing experiments due to the complex flow and heat transfer behavior.In the present study,the full-scale slat model is used to carry out anti-icing experimental researches in a 2 m×3 m icing wind tunnel of China Aerodynamics Research and Development Center.The effects of icing parameters Liquid Water Content(LWC)and Median Volume Diameter(MVD)and hot air parameters(mass flow rate and temperature)on the thermal performance of an inner-liner anti-icing system with jets impingement heat transfer are studied.The effects of the experimental parameters are analyzed in detail by combining impingement and evaporation heat transfer mechanisms.The impingement hot air mass flow rate dramatically affects the heat transfer performance of the impingement stagnation region within the range of the experimental parameters.The temperature of impingement hot air and that of wing skin are approximately linear correlated.The experimental results show the effects of LWC and MVD on water film formation and runback ice accretion.The formation of water film is analyzed by an analytical method based on the wing skin temperature difference of dry and wet air conditions.
基金financially supported by the National Natural Science Foundation of China(Grant No.51778511)the Hubei Provincial Natural Science Foundation of China(Grant No.2018CFA029)the Key Project of ESI Discipline Development of Wuhan University of Technology(WUT Grant No.2017001)
文摘The combination of a microchannel heat sink with impinging jets and dimples(MHSIJD) can effectively improve the flow and heat transfer performance on the cooling surface of electronic devices with very high heat fluxes. Based on the previous work by analysing the effect of dimple radius on the overall performance of MHSIJD, the effects of dimple height and arrangement were numerically analysed. The velocity distribution, pressure drop, and thermal performance of MHSIJD under various dimple heights and arrangements were presented. The results showed that: MHSIJD with higher dimples had better overall performance with dimple radius being fixed; creating a mismatch between the impinging hole and dimple can solve the issue caused by the drift phenomenon; the mismatch between the impinging hole and dimple did not exhibit better overall performance than a well-matched design.