This paper focuses on anti-jamming and anti-eavesdropping problem in air-to-ground(A2G)communication networks considering the impact of body jitter of unmanned aerial vehicle(UAV).A full-duplex(FD)active ground eavesd...This paper focuses on anti-jamming and anti-eavesdropping problem in air-to-ground(A2G)communication networks considering the impact of body jitter of unmanned aerial vehicle(UAV).A full-duplex(FD)active ground eavesdropper launches jamming attack while eavesdropping to stimulate the legitimate transmitter(i.e.,UAV)to increase its transmission power.The legitimate transmitter’s objective is to against the simultaneous wiretapping and jamming with a robust and power-efficient transmission scheme.The active eavesdropper aims to minimize the system secrecy rate.To study the interaction between the legitimate transmitter and the active eavesdropper,a non-cooperative game framework is formulated.Detailed,considering the impact of UAV jitter on antenna array response and secrecy performance,we first investigate the UAV’s transmission power minimization problem for the worst scenario with minimum legitimate data rate and maximum eavesdropping data rate under UAV jitter.Then,the active eavesdropper’s secrecy rate minimization problem with the worst scenario is investigated by optimizing its jamming strategy.Nash equilibrium is proved to be existed and obtained with the proposed iterative algorithm.Finally,extensive numerical results are provided to evaluate the system secrecy performance and to show the secrecy performance gains of the proposed method.展开更多
Successful modeling of hydroenvironmental processes widely relies on quantity and quality of accessible data,and noisy data can affect the modeling performance.On the other hand in training phase of any Artificial Int...Successful modeling of hydroenvironmental processes widely relies on quantity and quality of accessible data,and noisy data can affect the modeling performance.On the other hand in training phase of any Artificial Intelligence(AI) based model,each training data set is usually a limited sample of possible patterns of the process and hence,might not show the behavior of whole population.Accordingly,in the present paper,wavelet-based denoising method was used to smooth hydrological time series.Thereafter,small normally distributed noises with the mean of zero and various standard deviations were generated and added to the smooth time series to form different denoised-jittered data sets.Finally,the obtained pre-processed data were imposed into Artificial Neural Network(ANN) and Adaptive Neuro-Fuzzy Inference System(ANFIS)models for daily runoff-sediment modeling of the Minnesota River.To evaluate the modeling performance,the outcomes were compared with results of multi linear regression(MLR) and Auto Regressive Integrated Moving Average(ARIMA)models.The comparison showed that the proposed data processing approach which serves both denoising and jittering techniques could enhance the performance of ANN and ANFIS based runoffsediment modeling of the case study up to 34%and 25%in the verification phase,respectively.展开更多
Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and s...Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and security.One of the core features of TSN is traffic scheduling with bounded low delay in the network.However,traffic scheduling schemes in TSN are usually synthesized offline and lack dynamism.To implement incremental scheduling of newly arrived traffic in TSN,we propose a Dynamic Response Incremental Scheduling(DR-IS)method for time-sensitive traffic and deploy it on a software-defined time-sensitive network architecture.Under the premise of meeting the traffic scheduling requirements,we adopt two modes,traffic shift and traffic exchange,to dynamically adjust the time slot injection position of the traffic in the original scheme,and determine the sending offset time of the new timesensitive traffic to minimize the global traffic transmission jitter.The evaluation results show that DRIS method can effectively control the large increase of traffic transmission jitter in incremental scheduling without affecting the transmission delay,thus realizing the dynamic incremental scheduling of time-sensitive traffic in TSN.展开更多
A system model is developed to describe the translational and rotational motion of an active-magnetic-bearing-suspended rigid rotor in a single-gimbal control moment gyro onboard a rigid satellite. This model strictly...A system model is developed to describe the translational and rotational motion of an active-magnetic-bearing-suspended rigid rotor in a single-gimbal control moment gyro onboard a rigid satellite. This model strictly reflects the motion characteristics of the rotor by considering the dynamic and static imbalance as well as the coupling between the gimbal's and the rotor's motion on a satellite platform. Adaptive auto-centering control is carefully constructed for the rotor with unknown dynamic and static imbalance. The rotor makes its rotation about the principal axis of inertia through identifying the small rotational angles between the geometric axis and the principal axis as well as the displacements from the geometric center to the mass center so as to tune a stabilizing controller composed of a decentralized PD controller with cross-axis proportional gains and high- and low-pass filters. The main disturbance in the wheel spinning can thereby be completely removed and the vibration acting on the satellite attenuated.展开更多
A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short...A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short locking time. The voltage-controlled oscillator within the PLL consists of four-stage ring oscillators which are coupled to each other and oscillate with the same frequency and a phase shift of 45. The PLL is fabricated in 0. 1Stem CMOS technology. The measured phase noise of the PLL output at 500kHz offset from the 5GHz center frequency is - 102.6dBc/Hz. The circuit exhibits a capture range of 280MHz and a low RMS jitter of 2.06ps. The power dissipation excluding the output buffers is only 21.6roW at a 1.8V supply.展开更多
基金supported in part by the Beijing Municipal Natural Science Foundation under Grant 4212005in part by the National Natural Science Foundation of China under 62271076+1 种基金in part by Young Elite Scientists Sponsorship Program by CAST(YESS20200283)in part by the Fundamental Research Funds for the Central Universities under Grant 2242022k60006.
文摘This paper focuses on anti-jamming and anti-eavesdropping problem in air-to-ground(A2G)communication networks considering the impact of body jitter of unmanned aerial vehicle(UAV).A full-duplex(FD)active ground eavesdropper launches jamming attack while eavesdropping to stimulate the legitimate transmitter(i.e.,UAV)to increase its transmission power.The legitimate transmitter’s objective is to against the simultaneous wiretapping and jamming with a robust and power-efficient transmission scheme.The active eavesdropper aims to minimize the system secrecy rate.To study the interaction between the legitimate transmitter and the active eavesdropper,a non-cooperative game framework is formulated.Detailed,considering the impact of UAV jitter on antenna array response and secrecy performance,we first investigate the UAV’s transmission power minimization problem for the worst scenario with minimum legitimate data rate and maximum eavesdropping data rate under UAV jitter.Then,the active eavesdropper’s secrecy rate minimization problem with the worst scenario is investigated by optimizing its jamming strategy.Nash equilibrium is proved to be existed and obtained with the proposed iterative algorithm.Finally,extensive numerical results are provided to evaluate the system secrecy performance and to show the secrecy performance gains of the proposed method.
基金financially supported by a grant from Research Affairs of Najafabad Branch,Islamic Azad University,Iran
文摘Successful modeling of hydroenvironmental processes widely relies on quantity and quality of accessible data,and noisy data can affect the modeling performance.On the other hand in training phase of any Artificial Intelligence(AI) based model,each training data set is usually a limited sample of possible patterns of the process and hence,might not show the behavior of whole population.Accordingly,in the present paper,wavelet-based denoising method was used to smooth hydrological time series.Thereafter,small normally distributed noises with the mean of zero and various standard deviations were generated and added to the smooth time series to form different denoised-jittered data sets.Finally,the obtained pre-processed data were imposed into Artificial Neural Network(ANN) and Adaptive Neuro-Fuzzy Inference System(ANFIS)models for daily runoff-sediment modeling of the Minnesota River.To evaluate the modeling performance,the outcomes were compared with results of multi linear regression(MLR) and Auto Regressive Integrated Moving Average(ARIMA)models.The comparison showed that the proposed data processing approach which serves both denoising and jittering techniques could enhance the performance of ANN and ANFIS based runoffsediment modeling of the case study up to 34%and 25%in the verification phase,respectively.
基金supported by the Innovation Scientists and Technicians Troop Construction Projects of Henan Province(224000510002)。
文摘Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and security.One of the core features of TSN is traffic scheduling with bounded low delay in the network.However,traffic scheduling schemes in TSN are usually synthesized offline and lack dynamism.To implement incremental scheduling of newly arrived traffic in TSN,we propose a Dynamic Response Incremental Scheduling(DR-IS)method for time-sensitive traffic and deploy it on a software-defined time-sensitive network architecture.Under the premise of meeting the traffic scheduling requirements,we adopt two modes,traffic shift and traffic exchange,to dynamically adjust the time slot injection position of the traffic in the original scheme,and determine the sending offset time of the new timesensitive traffic to minimize the global traffic transmission jitter.The evaluation results show that DRIS method can effectively control the large increase of traffic transmission jitter in incremental scheduling without affecting the transmission delay,thus realizing the dynamic incremental scheduling of time-sensitive traffic in TSN.
文摘A system model is developed to describe the translational and rotational motion of an active-magnetic-bearing-suspended rigid rotor in a single-gimbal control moment gyro onboard a rigid satellite. This model strictly reflects the motion characteristics of the rotor by considering the dynamic and static imbalance as well as the coupling between the gimbal's and the rotor's motion on a satellite platform. Adaptive auto-centering control is carefully constructed for the rotor with unknown dynamic and static imbalance. The rotor makes its rotation about the principal axis of inertia through identifying the small rotational angles between the geometric axis and the principal axis as well as the displacements from the geometric center to the mass center so as to tune a stabilizing controller composed of a decentralized PD controller with cross-axis proportional gains and high- and low-pass filters. The main disturbance in the wheel spinning can thereby be completely removed and the vibration acting on the satellite attenuated.
文摘A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short locking time. The voltage-controlled oscillator within the PLL consists of four-stage ring oscillators which are coupled to each other and oscillate with the same frequency and a phase shift of 45. The PLL is fabricated in 0. 1Stem CMOS technology. The measured phase noise of the PLL output at 500kHz offset from the 5GHz center frequency is - 102.6dBc/Hz. The circuit exhibits a capture range of 280MHz and a low RMS jitter of 2.06ps. The power dissipation excluding the output buffers is only 21.6roW at a 1.8V supply.