The c-Jun N-terminal kinases (JNKs) are important regulators of a variety of physiological and pathological processes both in the central and in the peripheral nervous systems. JNKs are considered as crucial mediato...The c-Jun N-terminal kinases (JNKs) are important regulators of a variety of physiological and pathological processes both in the central and in the peripheral nervous systems. JNKs are considered as crucial mediators of neuronal cell death in response to stress and injury. However, recent studies have provided substantial evidence that the JNK pathway plays an important role in neuronal migration. Here, we will give a brief introduction of the JNK signaling pathway and put more emphasis on its role in nettronal migration.展开更多
Optic nerve transection increased the expression of heat shock protein 72 (HSP72) in the lateral geniculate body, indicating that this protein is involved in the prevention of neuronal injury. Zinc sulfate and querc...Optic nerve transection increased the expression of heat shock protein 72 (HSP72) in the lateral geniculate body, indicating that this protein is involved in the prevention of neuronal injury. Zinc sulfate and quercetin induced and inhibited the expression of HSP72, respectively. Intraperitoneal injections of zinc sulfate, SP600125 (c-Jun N-terminal kinase inhibitor), or quercetin were performed on retinal ganglion cells in a Wistar rat model of chronic ocular hypertension. Our results showed that compared with the control group, the expression of HSP72 in retinal ganglion cells and the lateral geniculate body was increased after the injection of zinc sulfate, but was decreased after the injection of quercetin. The expression of phosphorylated c-Jun N-terminal kinases and phosphorylated c-Jun were visible 3 days after injection in the control group, and reached apeak at 7 days. Zinc sulfate and SP600125 significantly decreased the expression of p-c-Jun, whereas quercetin significantly enhanced the expression of this protein. These results suggest that HSP72 protects retinal ganglion cells and lateral geniculate body in a rat model of chronic ocular hypertension from injury by blocking the activation of the stress-activated kinase/c-Jun N-terminal kinase apoptotic pathway.展开更多
Background:Non-alcoholic fatty liver disease(NAFLD)can cause insulin resistance(IR)and diabetes.Our previous studies have demonstrated that Jian-Gan-Xiao-Zhi decoction(JGXZ)could be effective for the treatment of NAFL...Background:Non-alcoholic fatty liver disease(NAFLD)can cause insulin resistance(IR)and diabetes.Our previous studies have demonstrated that Jian-Gan-Xiao-Zhi decoction(JGXZ)could be effective for the treatment of NAFLD and IR.However,the possible mechanism underlying the effects of JGXZ on NAFLD and IR remains unknown.Methods:Fifty rats received a high-fat high-carbohydrate(HFHC)diet for 12 weeks to induce NAFLD.After 4 weeks of HFHC treatment,rats were orally treated with JGXZ(8,16,and 32 g/kg weight)for 8 weeks.Ten rats in the control group received standard chow.In the positive control group,rats were orally treated with metformin(90 mg/kg weight)for 8 weeks.After JGXZ and metformin treatment,H&E staining was conducted on rat livers and serum biochemical markers,including alanine aminotransferase(ALT),aspartate aminotransferase(AST),triglyceride(TG),and total cholesterol(TC),were measured using test kits.Moreover,a fasting blood glucose test and an oral glucose tolerance test(OGTT)were conducted.Serum levels of insulin were determined using ELISA kit,and the homeostatic model assessment of insulin resistance(HOMA-IR)was calculated.The levels of total insulin receptor substrate-1(IRS1),AMP-activated protein kinase-α(AMPKα)and c-Jun N-terminal kinase(JNK)as well as the levels of phosphorylation of IRS1(p-IRS1),phosphorylation of AMPK(p-AMPK)and phosphorylation of JNK(p-JNK)were measured using western blotting.Results:The body weights in JGXZ low-,middle-,and high-dose groups were lower than those in the model group(P<0.05,P<0.01,P<0.01,respectively).The serum levels of AST(P<0.05 in JGXZ middle-and high-dose groups),ALT(P<0.01 in JGXZ middle-dose group and P<0.05 in JGXZ high-dose group),TG(P<0.01 in JGXZ middle-and high-dose groups),and TC(P<0.01)upon JGXZ treatment were lower those than in NAFLD model rats.H&E staining showed that JGXZ treatment reduced steatosis of the hepatocytes in NAFLD model rats.JGXZ decreased the levels of fasting blood glucose(P<0.01),HOMA-IR(P<0.01),AUC(area under the curve)of the OGTT(P<0.05)and p-IRS1(P<0.01 in JGXZ middle-and high-dose groups,P<0.05 in JGXZ low-dose groups).Moreover,JGXZ regulated the hepatic AMPKα/JNK pathway in NAFLD model rats,which reflected the induction of p-AMPKαand inhibition of p-JNK.Conclusion:This study showed that JGXZ improved liver function and reduced steatosis of the hepatocytes in NAFLD model rats.Moreover,JGXZ improved IR in NAFLD model rats.The possible mechanism underlying the effects of JGXZ on NAFLD and IR involves the modulation of the AMPK/JNK pathway.展开更多
Objective To investigate the effect of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZJJF)on hippocampal neuron apoptosis in diabetic rats with depression and to ascertain whether its mechanism involves the regulation...Objective To investigate the effect of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZJJF)on hippocampal neuron apoptosis in diabetic rats with depression and to ascertain whether its mechanism involves the regulation of JNK signaling pathway.Methods(i)A total of 72 specific pathogen-free(SPF)grade male Sprague Dawley(SD)rats were randomly divided into six groups,with 12 rats in each group:control,model,metformin(Met,0.18 g/kg)+fluoxetine(Flu,1.8 mg/kg),and the high-,medium-,and low-ZJJF dosages(ZJJF-H,20.52 g/kg;ZJJF-M,10.26 g/kg;ZJJF-L,5.13 g/kg)groups.All groups except control group were injected once via the tail vein with streptozotocin(STZ,38 mg/kg)combined with 28 d of chronic unpredictable mild stress(CUMS)to establish diabetic rat models with depression.During the CUMS modeling period,treatments were administered via gavage,with control and model groups receiving an equivalent volume of distilled water for 28 d.The efficacy of ZJJF in reducing blood sugar and alleviating depression was evaluated by measuring fasting blood glucose,insulin,and glycated hemoglobin levels,along with behavioral assessments,including the open field test(OFT),forced swim test(FST),and sucrose preference test(SPT).Hippocampal tissue damage and neuronal apoptosis were evaluated using hematoxylin-eosin(HE)staining and terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling(TUNEL)staining.Apoptosis-related proteins Bax,Bcl-2,caspase-3,and the expression levels of JNK/Elk-1/c-fos signaling pathway were detected using Western blot and real-time quantitative polymerase chain reaction(RT-qPCR).(ii)To further elucidate the role of JNK signaling pathway in hippocampal neuronal apoptosis and the pharmacological effects of ZJJF,an additional 50 SPF grade male SD rats were randomly divided into five groups,with 10 rats in each group:control,model,SP600125(SP6,a JNK antagonist,10 mg/kg),ZJJF(20.52 g/kg),and ZJJF(20.52 g/kg)+Anisomycin(Aniso,a JNK agonist,15 mg/kg)groups.Except for control group,all groups were established as diabetic rat models with depression,and treatments were administered via gavage for ZJJF and intraperitoneal injection for SP6 and Aniso for 28 d during the CUMS modeling period.Behavioral changes in rats were evaluated through the OFT,FST,and SPT,and hippocampal neuron damage and apoptosis were observed using HE staining,Nissl staining,TUNEL staining,and transmission electron microscopy(TEM).Changes in apoptosis-related proteins and JNK signaling pathway in the hippocampal tissues of rats were also analyzed.展开更多
The c-Jun NH2-terminal Kinase (JNK) pathway representsone sub-group of the mitogen-activated protein (MAP)kinases which plays an important role in variousinflammatory diseases states, including inflammatorybowel disea...The c-Jun NH2-terminal Kinase (JNK) pathway representsone sub-group of the mitogen-activated protein (MAP)kinases which plays an important role in variousinflammatory diseases states, including inflammatorybowel disease (IBD). Significant progress towardsunderstanding the function of the JNK signaling pathwayhas been achieved during the past few years. Blockadeof the JNK pathway with JNK inhibitors in animal modelsof IBD lead to resolution of intestinal inflammation.Current data suggest specific JNK inhibitors hold promiseas novel therapies in IBD.展开更多
Background: Cathepsin L (CatL) is a cysteine protease with strong matrix degradation activity that contributes to photoaging. Mannose phosphate-independent sorting pathways mediate ultraviolet A (UVA)-induced alt...Background: Cathepsin L (CatL) is a cysteine protease with strong matrix degradation activity that contributes to photoaging. Mannose phosphate-independent sorting pathways mediate ultraviolet A (UVA)-induced alternate trafficking of CatL. Little is known about signaling pathways involved in the regulation of UVA-induced CatL expression and activity. This study aims to investigate whether a single UVA irradiation affects CatL expression and activity and whether mitogen-activated protein kinase (MAPK)/activator protein- 1 (AP- 1 ) pathway is involved in the regulation of UVA-induced CatL expression and activity in human dermal fibroblasts (HDFs). Methods: Primary HDFs were exposed to UVA. Cell proliferation was determined by a cell counting kit. UVA-induced CatL production and activity were studied with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and fluorimetric assay in cell lysates collected on three consecutive days after irradiation. Time courses of UVA-activated JNK and p38MAPK signaling were examined by Western blotting. Effects ofMAPK inhibitors and knockdown of dun and Fos on UVA-induced CatL expression and activity were investigated by RT-PCR, Western blotting, and fluorimetric assay. Data were analyzed by one-way analysis of variance. Results: UVA significantly increased CatL gene expression, protein abundance, and enzymatic activity for three consecutive days after irradiation (F = 83.11, 56.14, and 71. 19, respectively; all P 〈 0.05). Further investigation demonstrated phosphorylation of JNK and p38MAPK activated by UVA. Importantly, inactivation of JNK pathway significantly decreased UVA-induced CatL expression and activity, which were not affected by p38MAPK inhibition. Moreover, knockdown of dun and Fos significantly attenuated basal and UVA-induced CatL expression and activity. Conclusions: UVA enhances CatL production and activity in HDFs, probably by activating JNK and downstreaming AP- 1. These findings provide a new possible molecular approach for antiphotoaging therapy.展开更多
OBJECTIVE To investigate the effect and the mechanisms of realgar transforming solution(RTS)on down-regulating over activated ras.METHODS we used the optimizing technical processes to obtain the RTS,and eval⁃uate the ...OBJECTIVE To investigate the effect and the mechanisms of realgar transforming solution(RTS)on down-regulating over activated ras.METHODS we used the optimizing technical processes to obtain the RTS,and eval⁃uate the mechanisms of RTS on down-regulating overactivated ras in Caenorhabditis elegans.RESULTS We found that the mRNA level of let60 and lin45 significantly decreased following exposure to RTS,but mRNA levels of mpk1 were not statistically significant in let60/ras(gf)mutant.RTS together with sorafenib(RAF inhibitors)significantly enhanced the activity of RTS on down-regulating overactivated ras more than RTS only,but 50μmol·L^-1 PD98059,a specific ERK inhibitor did not.Lin45 gene RNAi decreased the ability of RTS on down-regulating overactivated ras significantly,but mpk1 gene RNAi did not,indicating that the activity of RTS on down-regulating overactivated ras mainly through targeting to lin45/raf.In addition,RTS significantly increased mRNA level of pmk1/p38 and jnk1/jnk in let-60/ras(gf)mutant,50μmol·L^-1 SB203580(p38 inhibitor)and SP600125(JNK inhibitor)significantly attenuated the effects of RTS on down-regulating overactivated ras in some degree,and pmk1,jnk1 gene RNAi displayed the similar results,suggesting that P38 and JNK/MAPK pathways in some degree were involved in the effects of RTS on down-regulating overactivated ras in C.ele⁃gans.CONCLUSION Realgar transforming solution down-regulate the Ras/MAPK pathway through JNK and P38 MAPK pathways.展开更多
Objective:The aim of the study was to investigate the effect of c-Jun N-terminal protein kinase(JNK) signaling pathway on influencing the sensitivity to radiotherapy of human nasopharyngeal carcinoma CNE cells.Methods...Objective:The aim of the study was to investigate the effect of c-Jun N-terminal protein kinase(JNK) signaling pathway on influencing the sensitivity to radiotherapy of human nasopharyngeal carcinoma CNE cells.Methods:Human nasopharyngeal carcinoma CNE multicellular spheroids(MCS) were constructed with three dimensional cell culture methods.Western blot was employed to analyze the activity of JNK signaling pathway in MCS after X-ray irradiation,and the expression of caspase-3 protein before and after using SP600125(a special inhibitor of JNK).X-ray induced cell apoptosis in MCS before and after treated with SP600125 were detected by TUNEL.Results:The level of JNK phosphorylation in MCS was a dynamic course after radiation,and there was a phosphorylation peaks at 2 h later,the apoptotic rate of MCS(P < 0.05) and the expression of caspase-3 protein(P < 0.05) were significantly increased after treated with SP600125.Conclusion:The transient activation of JNK played a important role in sensitivity to radiotherapy of CNE MCS via mediating survival signals,blocking this pathway accelerate cell apoptosis,which may be related to the increased expression of caspase-3.展开更多
Objective:To investigate the effects of butylphthalide on reducing neuronal apoptosis in rats with cerebral infarction by inhibiting the JNK/P38 MAPK signaling pathway.Methods:Forty-eight SD male rats were divided int...Objective:To investigate the effects of butylphthalide on reducing neuronal apoptosis in rats with cerebral infarction by inhibiting the JNK/P38 MAPK signaling pathway.Methods:Forty-eight SD male rats were divided into DZ group(control group),CI group(model group)and NBP group(butylphthalide group).Rats in CI group and NBP group were used to establish cerebral infarction models.NBP group used NBP.The solution(80 mg/(kg?d))was administered orally,and the remaining two groups were administered with the same volume of peanut oil.After 14 consecutive days of treatment,the Zea Longa score was used to evaluate the neurological function of DZ,CI and NBP rats.Scoring,TTC staining was used to observe the cerebral infarction volume of rats in DZ group,CI group and NBP group,HE staining was used to observe the pathological morphology of brain tissue in DZ group,CI group and NBP group.Neuronal apoptosis,Western blot was used to detect the expression of p-JNK and p-p38MAPK in brain tissues of DZ group,CI group and NBP group.Results:The neurological function of the rats in the CI group was higher than that in the DZ group,and the difference was statistically significant(P<0.05).The neurological function score of the rats in the NBP group was reduced compared with the CI group,and the difference was statistically significant(P<0.05).The cerebral infarction volume in the group was 35.56%higher than that in the DZ group,and the difference was statistically significant(P<0.05).The minor infarct volume in the NBP group was 21.59%,which was less than that in the CI group,and the difference was statistically significant(P<0.05).Nerve cells are neatly sorted,with a large number.The gap between blood vessels and interstitial tissue in the CI group is enlarged,the cells are severely contracted,and the neuron structure is incomplete.Compared with the CI group,the NBP group has reduced neuron contraction and increased number;The dead nerve cells were brown.The apoptosis rate of nerve cells in the CI group was 79.65%higher than that in the DZ group was 5.82%.The difference was statistically significant(P<0.05).The nerve cell apoptosis rate in the NBP group was 30.23%.Compared with CI group,the difference was statistically significant(P<0.05);Western blot results showed that p-JNK and p-p38MAPK protein expression in CI group was higher than that in DZ group,and the difference was statistically significant(P<0.05).The levels of p-JNK and p-p38MAPK proteins in the NBP group were lower than those in the CI group.There was statistically significant(P<0.05).Conclusion:Butylphthalide can improve neurological damage,reduce apoptotic nerve cells,and reduce infarct volume in rats with cerebral infarction,which is related to the inhibition of JNK/P38 MAPK pathway expression.展开更多
Background:Panax notoginseng(PNE)is a prominent traditional Chinese medicine with extensive beneficial effects on the immune system.However,the precise mechanism of PNE in treating inflammatory bowel disease(IBD)remai...Background:Panax notoginseng(PNE)is a prominent traditional Chinese medicine with extensive beneficial effects on the immune system.However,the precise mechanism of PNE in treating inflammatory bowel disease(IBD)remains unclear.Methods:We first used an extensive metabolomics approach utilizing UPLC-ESI-Q TRAP-MS/MS to identify the metabolite components of PNE aqueous extract.Moreover,the mechanism of PNE in treating IBD was investigated through in silico analysis including RNA-seq analysis,Network pharmacology and Molecular docking.Then a Drosophila toxin-induced intestinal inflammation model was employed to investigate further.Results:A total of 1,543 metabolites of PNE aqueous extract were characterized using UPLC-ESI-Q TRAP-MS/MS.In silico analyses showed that 97 IBD hub targets were targeted by 21 PNE ingredients.Kyoto Encyclopedia of Genes and Genomes results indicated that PNE may play an anti-IBD role through the Mitogen-activated protein kinase(MAPK)signaling pathway and other immune-related signaling pathways.Moreover,11 top hits compounds of PNE show a good affinity binding to IBD targets.The experimental results demonstrated that PNE can effectively improve the survival rate of adult Drosophila while also inhibit the excessive proliferation and differentiation of intestinal stem cells induced by sodium dodecyl sulfate.Furthermore,PNE notably lower the epithelial cell mortality,the accumulation of reactive oxygen species and the activation of oxidative stress-associated jun-Nterminal kinase(JNK)pathway.Conclusion:Our data suggests that PNE aqueous extract has a significant protective impact on the intestinal homeostasis of Drosophila.These findings establish a basis for utilizing PNE in clinical investigations and managing IBD.展开更多
Objective To investigate whether JNK-caspase-dependent apoptotic pathway is involved in Aβ31-35-induced apoptosis of cultured cortical neurons. Methods Cultured cortical neurons were treated with Aβ31-35 (25 μmol/...Objective To investigate whether JNK-caspase-dependent apoptotic pathway is involved in Aβ31-35-induced apoptosis of cultured cortical neurons. Methods Cultured cortical neurons were treated with Aβ31-35 (25 μmol/L) for 4 h, 8 h, 16 h and 24 h, respectively. Caspase activities were measured using a spectrophotometer. Levels of c-Jun phosphorylation (p-c-Jun) and Fas ligand (FasL) expression were assessed by immunocytochemistry method and quantified using Image-pro plus11.0 image processing and analysis software. Results Treatment with Aβ31-35 (25 μmol/L) for 24 h induced significant increases in the activities of caspase-3 and caspase-8 in the cortical neurons. Besides, Aβ31-35 could time-dependently enhance the expression of p-c-Jun protein. Moreover, SP600125 application (100 nmol/L) could completely abolish Aβ31-35 neurotoxicity. The increase in FasL expression was detected at 8 h, 16 h and 24 h after Aβ31-35 treatment, and SP600125 (100 nmol/L) significantly inhibited FasL expression. Conclusion JNK-c-Jun-FasL-caspase-dependent extrinsic apoptotic pathway plays a critical role in mediating Aβ31-35-induced apoptosis of cultured neurons.展开更多
Luteolin is neuroprotective for retinal ganglion cells and retinal pigment epithelial cells after oxidative injury,whereby it can inhibit microglial neurotoxicity.Therefore,luteolin holds the potential to be useful fo...Luteolin is neuroprotective for retinal ganglion cells and retinal pigment epithelial cells after oxidative injury,whereby it can inhibit microglial neurotoxicity.Therefore,luteolin holds the potential to be useful for treatment of retinal diseases.The purpose of this study was to investigate whether luteolin exhibits neuroprotective effects on rod cells in rd10 mice,a slow photoreceptor-degenerative model of retinitis pigmentosa.Luteolin(100 mg/kg)intraperitoneally injected daily from postnatal day 14(P14)to P25 significantly enhanced the visual performance and retinal light responses of rd10 mice at P25.Moreover,it increased the survival of photoreceptors and improved retinal structure.Mechanistically,luteolin treatment attenuated increases in reactive oxygen species,photoreceptor apoptosis,and reactive gliosis;increased mRNA levels of anti-inflammatory cytokines while lowering that of pro-inflammatory and chemoattractant cytokines;and lowered the ratio of phospho-JNK/JNK.Application of the JNK inhibitor SP600125 exerted a similar protective effect to luteolin,suggesting that luteolin delays photoreceptor degeneration and functional deterioration in rd10 mice through regulation of retinal oxidation and inflammation by inhibiting the JNK pathway.Therefore,luteolin may be useful as a supplementary treatment for retinitis pigmentosa.This study was approved by the Qualified Ethics Committee of Jinan University,China(approval No.IACUC-20181217-02)on December 17,2018.展开更多
Programmed cell death (apoptosis) is a key host response to virus infection. Viruses that can modulate host apoptotic responses are likely to gain important opportunities for transmission. Here we review recent stud...Programmed cell death (apoptosis) is a key host response to virus infection. Viruses that can modulate host apoptotic responses are likely to gain important opportunities for transmission. Here we review recent studies that demonstrate that particles of Invertebrate iridescent virus 6 (IIV-6) (Iridoviridae, genus Iridovirus), or an IIV-6 virion protein extract, are capable of inducing apoptosis in lepidopteran and coleopteran cells, at concentrations 1000-fold lower than that required to shut-off host macromolecular synthesis. Induction of apoptosis depends on endocytosis of one or more heat-sensitive virion component(s). Studies with a JNK inhibitor (SP600125) indicated that the JNK signaling pathway is significantly involved in apoptosis in IIV-6 infections of Choristoneurafumiferana cells. The genome of IIV-6 codes for an inhibitor of apoptosis iap gene (193R) that encodes a protein of 208 aa with 15% identity and 28% similarity in its amino acid sequence to IAP-3 from Cydia pomonella ganulovirus (CpGV). Transcription of IIV-6 iap did not require prior DNA or protein synthesis, indicating that it is an immediate-early class gene. Transient expression and gene knockdown studies have confirmed the functional nature of the IIV-6 lap gene. We present a tentative model for IIV-6 induction and inhibition of apoptosis in insect cells and discuss the potential applications of these findings in insect pest control.展开更多
Objective To investigate the effect of SP600125, a specific c-jun N-terminal protein kinase (JNK) inhibitor, on Staphylococcus aureus (S. aureus)-induced U937 cell death and the underlying mechanism. Methods The human...Objective To investigate the effect of SP600125, a specific c-jun N-terminal protein kinase (JNK) inhibitor, on Staphylococcus aureus (S. aureus)-induced U937 cell death and the underlying mechanism. Methods The human monocytic U937 cells were treated with S. aureus at different time with or without SP600125. Cell apoptosis was analyzed by flow cytometry. JNK, Bax, and caspase-3 activities were detected by Western blotting. Results S. aureus induced apoptosis in cultured U937 cells in a time-dependent manner. Expression of Bax and phospho-JNK significantly increased in S. aureus-treated U937 cells, and the level of activated caspase-3 also increased in a time-dependent manner. Inhibition of JNK with SP600125 significantly inhibited S. aureus-induced apoptosis in U937 cells. Conclusions S. aureus can induce apoptosis in U937 cells by phosphorylation of JNK and activation of Bax and caspase-3. SP600125 protects U937 cells from apoptosis induced by S. aureus via inhibiting the activity of JNK.展开更多
Objective To explore the role of miR-202 in multiple myeloma(MM)cells,and study the regulation of miR-202 on drug sensitivity of MM cells.Methods miR-202 and BAFF mRNA levels were detected by real-time PCR.U266 cells ...Objective To explore the role of miR-202 in multiple myeloma(MM)cells,and study the regulation of miR-202 on drug sensitivity of MM cells.Methods miR-202 and BAFF mRNA levels were detected by real-time PCR.U266 cells were transfected with miR-202-mimics,miR-202-inhibitor,siB AFF and their negative controls.展开更多
Background:Arteriosclerosis obliterans(ASO)is a major cause of adult limb loss worldwide.Autophagy of vascular endothelial cell(VEC)contributes to the ASO progression.However,the molecular mechanism that controls VEC ...Background:Arteriosclerosis obliterans(ASO)is a major cause of adult limb loss worldwide.Autophagy of vascular endothelial cell(VEC)contributes to the ASO progression.However,the molecular mechanism that controls VEC autophagy remains unclear.In this study,we aimed to explore the role of the GRB2 associated binding protein 1(GAB1)in regulating VEC autophagy.Methods:In vivo and in vitro studies were applied to determine the loss of adapt protein GAB1 in association with ASO progression.Histological GAB1 expression was measured in sclerotic vascular intima and normal vascular intima.Gain-and loss-of-function of GAB1 were applied in VEC to determine the effect and potential downstream signaling of GAB1.Results:The autophagy repressor p62 was significantly downregulated in ASO intima as compared to that in healthy donor(0.80 vs.0.20,t=6.43,P<0.05).The expression level of GAB1 mRNA(1.00 vs.0.24,t=7.41,P<0.05)and protein(0.72 vs.0.21,t=5.97,P<0.05)was significantly decreased in ASO group as compared with the control group.Loss of GAB1 led to a remarkable decrease in LC3II(1.19 vs.0.68,t=5.99,P<0.05),whereas overexpression of GAB1 significantly led to a decrease in LC3II level(0.41 vs.0.93,t=7.12,P<0.05).Phosphorylation levels of JNK and p38 were significantly associated with gain-and loss-of-function of GAB1 protein.Conclusion:Loss of GAB1 promotes VEC autophagy which is associated with ASO.GAB1 and its downstream signaling might be potential therapeutic targets for ASO treatment.展开更多
Over the past two decades,high sensitivity to HER2-amplified primary breast cancers has been achieved with HER2-targeted therapies.CDK4/6 inhibitors have long been identified as a potential treatment option for advanc...Over the past two decades,high sensitivity to HER2-amplified primary breast cancers has been achieved with HER2-targeted therapies.CDK4/6 inhibitors have long been identified as a potential treatment option for advanced breast cancer patients.However,acquired HER2 heterogeneity leading to resistance during the treatment has been identified as a bottleneck.This review focuses on the recent resistance mechanisms identified and potential therapeutic targets for conventional and combination endocrine therapies with CDK4/6 inhibitors by various breast cancer clinical trials and research groups in HER amplified and/or mutated breast cancer tumour.Activating HER2 alterations,JNK pathway,hyperactivated TORC1,co-mutations in HER2 and HER3,phenotypic changes of HER2,and few other advanced findings are identified as potential therapeutic targets in treating current HER2 endocrine therapy-resistant tumour.Along with the HER2-focused resistance mechanisms,we also describe how the microbiome may play a role in breast cancer therapy and its potential for new therapeutic strategies to overcome drug resistance in breast cancers.展开更多
Sequential activation of the JNK pathway components,including Rac1/Cdc42,MLKs(mixed-lineage kinases),MKK4/7 and JNKs,plays a required role in many cell death paradigms.Those components are organized by a scaffold prot...Sequential activation of the JNK pathway components,including Rac1/Cdc42,MLKs(mixed-lineage kinases),MKK4/7 and JNKs,plays a required role in many cell death paradigms.Those components are organized by a scaffold protein,POSH(Plenty of SH3’s),to ensure the effective activation of the JNK pathway and cell death upon apoptotic stimuli.We have shown recently that the expression of POSH and MLK family proteins are regulated through protein stability.By generating a variety of mutants,we provide evidence here that the Nterminal half of POSH is accountable for its stability regulation and its over-expression-induced cell death.In addition,POSH’s ability to induce apoptosis is correlated with its stability as well as its MLK binding ability.MLK family’s stability,like that of POSH,requires activation of JNKs.However,we were surprised to find out that the widely used dominant negative(d/n)form of c-Jun could down-regulate MLK’s stability,indicating that peptide from d/n c-Jun can be potentially developed into a therapeutical drug.展开更多
基金This work was supported in part by the National Natural Sciences Foundation of China (No.30530660)the Chinese Academy of Sciences Knowledge Innovation Program (No.KSCX1-YW-R-62)the National Basic Research of China (No.2006CB504100 and No. 2006CB500701).
文摘The c-Jun N-terminal kinases (JNKs) are important regulators of a variety of physiological and pathological processes both in the central and in the peripheral nervous systems. JNKs are considered as crucial mediators of neuronal cell death in response to stress and injury. However, recent studies have provided substantial evidence that the JNK pathway plays an important role in neuronal migration. Here, we will give a brief introduction of the JNK signaling pathway and put more emphasis on its role in nettronal migration.
基金financially supported by the National Natural Science Foundation of China,No.81170843,81370913the Natural Science Foundation of Hunan Province,China,No.5JJ30051+2 种基金New Century Excellent Talents in University from the Ministry of Education of China,No.NCET-06-0677the Natural Science Foundation of Anhui Province,China,No.1408085QH158the First Affiliated Hospital of Anhui Medical University,Incubation Program of the National Natural Science Foundation for Young Scholars of China,No.2012KJ19
文摘Optic nerve transection increased the expression of heat shock protein 72 (HSP72) in the lateral geniculate body, indicating that this protein is involved in the prevention of neuronal injury. Zinc sulfate and quercetin induced and inhibited the expression of HSP72, respectively. Intraperitoneal injections of zinc sulfate, SP600125 (c-Jun N-terminal kinase inhibitor), or quercetin were performed on retinal ganglion cells in a Wistar rat model of chronic ocular hypertension. Our results showed that compared with the control group, the expression of HSP72 in retinal ganglion cells and the lateral geniculate body was increased after the injection of zinc sulfate, but was decreased after the injection of quercetin. The expression of phosphorylated c-Jun N-terminal kinases and phosphorylated c-Jun were visible 3 days after injection in the control group, and reached apeak at 7 days. Zinc sulfate and SP600125 significantly decreased the expression of p-c-Jun, whereas quercetin significantly enhanced the expression of this protein. These results suggest that HSP72 protects retinal ganglion cells and lateral geniculate body in a rat model of chronic ocular hypertension from injury by blocking the activation of the stress-activated kinase/c-Jun N-terminal kinase apoptotic pathway.
基金This work was performed at the Yunnan University of Chinese Medicine,China,and was supported by the National Natural Science Foundation of China(8156150405)Natural Science Foundation of Tianjin(KL721).
文摘Background:Non-alcoholic fatty liver disease(NAFLD)can cause insulin resistance(IR)and diabetes.Our previous studies have demonstrated that Jian-Gan-Xiao-Zhi decoction(JGXZ)could be effective for the treatment of NAFLD and IR.However,the possible mechanism underlying the effects of JGXZ on NAFLD and IR remains unknown.Methods:Fifty rats received a high-fat high-carbohydrate(HFHC)diet for 12 weeks to induce NAFLD.After 4 weeks of HFHC treatment,rats were orally treated with JGXZ(8,16,and 32 g/kg weight)for 8 weeks.Ten rats in the control group received standard chow.In the positive control group,rats were orally treated with metformin(90 mg/kg weight)for 8 weeks.After JGXZ and metformin treatment,H&E staining was conducted on rat livers and serum biochemical markers,including alanine aminotransferase(ALT),aspartate aminotransferase(AST),triglyceride(TG),and total cholesterol(TC),were measured using test kits.Moreover,a fasting blood glucose test and an oral glucose tolerance test(OGTT)were conducted.Serum levels of insulin were determined using ELISA kit,and the homeostatic model assessment of insulin resistance(HOMA-IR)was calculated.The levels of total insulin receptor substrate-1(IRS1),AMP-activated protein kinase-α(AMPKα)and c-Jun N-terminal kinase(JNK)as well as the levels of phosphorylation of IRS1(p-IRS1),phosphorylation of AMPK(p-AMPK)and phosphorylation of JNK(p-JNK)were measured using western blotting.Results:The body weights in JGXZ low-,middle-,and high-dose groups were lower than those in the model group(P<0.05,P<0.01,P<0.01,respectively).The serum levels of AST(P<0.05 in JGXZ middle-and high-dose groups),ALT(P<0.01 in JGXZ middle-dose group and P<0.05 in JGXZ high-dose group),TG(P<0.01 in JGXZ middle-and high-dose groups),and TC(P<0.01)upon JGXZ treatment were lower those than in NAFLD model rats.H&E staining showed that JGXZ treatment reduced steatosis of the hepatocytes in NAFLD model rats.JGXZ decreased the levels of fasting blood glucose(P<0.01),HOMA-IR(P<0.01),AUC(area under the curve)of the OGTT(P<0.05)and p-IRS1(P<0.01 in JGXZ middle-and high-dose groups,P<0.05 in JGXZ low-dose groups).Moreover,JGXZ regulated the hepatic AMPKα/JNK pathway in NAFLD model rats,which reflected the induction of p-AMPKαand inhibition of p-JNK.Conclusion:This study showed that JGXZ improved liver function and reduced steatosis of the hepatocytes in NAFLD model rats.Moreover,JGXZ improved IR in NAFLD model rats.The possible mechanism underlying the effects of JGXZ on NAFLD and IR involves the modulation of the AMPK/JNK pathway.
基金National Natural Science Foundation of China(82104836 and 82104793)Science and Technology Talent Promotion Project of Hunan Province(2023TJ-N22).
文摘Objective To investigate the effect of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZJJF)on hippocampal neuron apoptosis in diabetic rats with depression and to ascertain whether its mechanism involves the regulation of JNK signaling pathway.Methods(i)A total of 72 specific pathogen-free(SPF)grade male Sprague Dawley(SD)rats were randomly divided into six groups,with 12 rats in each group:control,model,metformin(Met,0.18 g/kg)+fluoxetine(Flu,1.8 mg/kg),and the high-,medium-,and low-ZJJF dosages(ZJJF-H,20.52 g/kg;ZJJF-M,10.26 g/kg;ZJJF-L,5.13 g/kg)groups.All groups except control group were injected once via the tail vein with streptozotocin(STZ,38 mg/kg)combined with 28 d of chronic unpredictable mild stress(CUMS)to establish diabetic rat models with depression.During the CUMS modeling period,treatments were administered via gavage,with control and model groups receiving an equivalent volume of distilled water for 28 d.The efficacy of ZJJF in reducing blood sugar and alleviating depression was evaluated by measuring fasting blood glucose,insulin,and glycated hemoglobin levels,along with behavioral assessments,including the open field test(OFT),forced swim test(FST),and sucrose preference test(SPT).Hippocampal tissue damage and neuronal apoptosis were evaluated using hematoxylin-eosin(HE)staining and terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling(TUNEL)staining.Apoptosis-related proteins Bax,Bcl-2,caspase-3,and the expression levels of JNK/Elk-1/c-fos signaling pathway were detected using Western blot and real-time quantitative polymerase chain reaction(RT-qPCR).(ii)To further elucidate the role of JNK signaling pathway in hippocampal neuronal apoptosis and the pharmacological effects of ZJJF,an additional 50 SPF grade male SD rats were randomly divided into five groups,with 10 rats in each group:control,model,SP600125(SP6,a JNK antagonist,10 mg/kg),ZJJF(20.52 g/kg),and ZJJF(20.52 g/kg)+Anisomycin(Aniso,a JNK agonist,15 mg/kg)groups.Except for control group,all groups were established as diabetic rat models with depression,and treatments were administered via gavage for ZJJF and intraperitoneal injection for SP6 and Aniso for 28 d during the CUMS modeling period.Behavioral changes in rats were evaluated through the OFT,FST,and SPT,and hippocampal neuron damage and apoptosis were observed using HE staining,Nissl staining,TUNEL staining,and transmission electron microscopy(TEM).Changes in apoptosis-related proteins and JNK signaling pathway in the hippocampal tissues of rats were also analyzed.
文摘The c-Jun NH2-terminal Kinase (JNK) pathway representsone sub-group of the mitogen-activated protein (MAP)kinases which plays an important role in variousinflammatory diseases states, including inflammatorybowel disease (IBD). Significant progress towardsunderstanding the function of the JNK signaling pathwayhas been achieved during the past few years. Blockadeof the JNK pathway with JNK inhibitors in animal modelsof IBD lead to resolution of intestinal inflammation.Current data suggest specific JNK inhibitors hold promiseas novel therapies in IBD.
基金This work was supported by grants from National Natural Science Foundation of China (No. 81171523 and No. 81201241 ), Provincial Natural Science Foundation of Guangdong (No. 2016A030313236).
文摘Background: Cathepsin L (CatL) is a cysteine protease with strong matrix degradation activity that contributes to photoaging. Mannose phosphate-independent sorting pathways mediate ultraviolet A (UVA)-induced alternate trafficking of CatL. Little is known about signaling pathways involved in the regulation of UVA-induced CatL expression and activity. This study aims to investigate whether a single UVA irradiation affects CatL expression and activity and whether mitogen-activated protein kinase (MAPK)/activator protein- 1 (AP- 1 ) pathway is involved in the regulation of UVA-induced CatL expression and activity in human dermal fibroblasts (HDFs). Methods: Primary HDFs were exposed to UVA. Cell proliferation was determined by a cell counting kit. UVA-induced CatL production and activity were studied with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and fluorimetric assay in cell lysates collected on three consecutive days after irradiation. Time courses of UVA-activated JNK and p38MAPK signaling were examined by Western blotting. Effects ofMAPK inhibitors and knockdown of dun and Fos on UVA-induced CatL expression and activity were investigated by RT-PCR, Western blotting, and fluorimetric assay. Data were analyzed by one-way analysis of variance. Results: UVA significantly increased CatL gene expression, protein abundance, and enzymatic activity for three consecutive days after irradiation (F = 83.11, 56.14, and 71. 19, respectively; all P 〈 0.05). Further investigation demonstrated phosphorylation of JNK and p38MAPK activated by UVA. Importantly, inactivation of JNK pathway significantly decreased UVA-induced CatL expression and activity, which were not affected by p38MAPK inhibition. Moreover, knockdown of dun and Fos significantly attenuated basal and UVA-induced CatL expression and activity. Conclusions: UVA enhances CatL production and activity in HDFs, probably by activating JNK and downstreaming AP- 1. These findings provide a new possible molecular approach for antiphotoaging therapy.
文摘OBJECTIVE To investigate the effect and the mechanisms of realgar transforming solution(RTS)on down-regulating over activated ras.METHODS we used the optimizing technical processes to obtain the RTS,and eval⁃uate the mechanisms of RTS on down-regulating overactivated ras in Caenorhabditis elegans.RESULTS We found that the mRNA level of let60 and lin45 significantly decreased following exposure to RTS,but mRNA levels of mpk1 were not statistically significant in let60/ras(gf)mutant.RTS together with sorafenib(RAF inhibitors)significantly enhanced the activity of RTS on down-regulating overactivated ras more than RTS only,but 50μmol·L^-1 PD98059,a specific ERK inhibitor did not.Lin45 gene RNAi decreased the ability of RTS on down-regulating overactivated ras significantly,but mpk1 gene RNAi did not,indicating that the activity of RTS on down-regulating overactivated ras mainly through targeting to lin45/raf.In addition,RTS significantly increased mRNA level of pmk1/p38 and jnk1/jnk in let-60/ras(gf)mutant,50μmol·L^-1 SB203580(p38 inhibitor)and SP600125(JNK inhibitor)significantly attenuated the effects of RTS on down-regulating overactivated ras in some degree,and pmk1,jnk1 gene RNAi displayed the similar results,suggesting that P38 and JNK/MAPK pathways in some degree were involved in the effects of RTS on down-regulating overactivated ras in C.ele⁃gans.CONCLUSION Realgar transforming solution down-regulate the Ras/MAPK pathway through JNK and P38 MAPK pathways.
文摘Objective:The aim of the study was to investigate the effect of c-Jun N-terminal protein kinase(JNK) signaling pathway on influencing the sensitivity to radiotherapy of human nasopharyngeal carcinoma CNE cells.Methods:Human nasopharyngeal carcinoma CNE multicellular spheroids(MCS) were constructed with three dimensional cell culture methods.Western blot was employed to analyze the activity of JNK signaling pathway in MCS after X-ray irradiation,and the expression of caspase-3 protein before and after using SP600125(a special inhibitor of JNK).X-ray induced cell apoptosis in MCS before and after treated with SP600125 were detected by TUNEL.Results:The level of JNK phosphorylation in MCS was a dynamic course after radiation,and there was a phosphorylation peaks at 2 h later,the apoptotic rate of MCS(P < 0.05) and the expression of caspase-3 protein(P < 0.05) were significantly increased after treated with SP600125.Conclusion:The transient activation of JNK played a important role in sensitivity to radiotherapy of CNE MCS via mediating survival signals,blocking this pathway accelerate cell apoptosis,which may be related to the increased expression of caspase-3.
基金Key research project of medical science of Hubei province
文摘Objective:To investigate the effects of butylphthalide on reducing neuronal apoptosis in rats with cerebral infarction by inhibiting the JNK/P38 MAPK signaling pathway.Methods:Forty-eight SD male rats were divided into DZ group(control group),CI group(model group)and NBP group(butylphthalide group).Rats in CI group and NBP group were used to establish cerebral infarction models.NBP group used NBP.The solution(80 mg/(kg?d))was administered orally,and the remaining two groups were administered with the same volume of peanut oil.After 14 consecutive days of treatment,the Zea Longa score was used to evaluate the neurological function of DZ,CI and NBP rats.Scoring,TTC staining was used to observe the cerebral infarction volume of rats in DZ group,CI group and NBP group,HE staining was used to observe the pathological morphology of brain tissue in DZ group,CI group and NBP group.Neuronal apoptosis,Western blot was used to detect the expression of p-JNK and p-p38MAPK in brain tissues of DZ group,CI group and NBP group.Results:The neurological function of the rats in the CI group was higher than that in the DZ group,and the difference was statistically significant(P<0.05).The neurological function score of the rats in the NBP group was reduced compared with the CI group,and the difference was statistically significant(P<0.05).The cerebral infarction volume in the group was 35.56%higher than that in the DZ group,and the difference was statistically significant(P<0.05).The minor infarct volume in the NBP group was 21.59%,which was less than that in the CI group,and the difference was statistically significant(P<0.05).Nerve cells are neatly sorted,with a large number.The gap between blood vessels and interstitial tissue in the CI group is enlarged,the cells are severely contracted,and the neuron structure is incomplete.Compared with the CI group,the NBP group has reduced neuron contraction and increased number;The dead nerve cells were brown.The apoptosis rate of nerve cells in the CI group was 79.65%higher than that in the DZ group was 5.82%.The difference was statistically significant(P<0.05).The nerve cell apoptosis rate in the NBP group was 30.23%.Compared with CI group,the difference was statistically significant(P<0.05);Western blot results showed that p-JNK and p-p38MAPK protein expression in CI group was higher than that in DZ group,and the difference was statistically significant(P<0.05).The levels of p-JNK and p-p38MAPK proteins in the NBP group were lower than those in the CI group.There was statistically significant(P<0.05).Conclusion:Butylphthalide can improve neurological damage,reduce apoptotic nerve cells,and reduce infarct volume in rats with cerebral infarction,which is related to the inhibition of JNK/P38 MAPK pathway expression.
基金supported by the National Natural Science Foundation of China(31900366)atural Science Foundation of Liaoning Province(2023-MSLH-295)+2 种基金atural Science Foundation Initiation fund of Shenyang Medical College(20201001)Liaoning University Student Innovation and Entrepreneurship Research Fund Orders(20229033)sponsored by the Key Laboratory of Research on Pathogenesis of Allergen provoked Allergic Disease,Liaoning Province(2018-30).
文摘Background:Panax notoginseng(PNE)is a prominent traditional Chinese medicine with extensive beneficial effects on the immune system.However,the precise mechanism of PNE in treating inflammatory bowel disease(IBD)remains unclear.Methods:We first used an extensive metabolomics approach utilizing UPLC-ESI-Q TRAP-MS/MS to identify the metabolite components of PNE aqueous extract.Moreover,the mechanism of PNE in treating IBD was investigated through in silico analysis including RNA-seq analysis,Network pharmacology and Molecular docking.Then a Drosophila toxin-induced intestinal inflammation model was employed to investigate further.Results:A total of 1,543 metabolites of PNE aqueous extract were characterized using UPLC-ESI-Q TRAP-MS/MS.In silico analyses showed that 97 IBD hub targets were targeted by 21 PNE ingredients.Kyoto Encyclopedia of Genes and Genomes results indicated that PNE may play an anti-IBD role through the Mitogen-activated protein kinase(MAPK)signaling pathway and other immune-related signaling pathways.Moreover,11 top hits compounds of PNE show a good affinity binding to IBD targets.The experimental results demonstrated that PNE can effectively improve the survival rate of adult Drosophila while also inhibit the excessive proliferation and differentiation of intestinal stem cells induced by sodium dodecyl sulfate.Furthermore,PNE notably lower the epithelial cell mortality,the accumulation of reactive oxygen species and the activation of oxidative stress-associated jun-Nterminal kinase(JNK)pathway.Conclusion:Our data suggests that PNE aqueous extract has a significant protective impact on the intestinal homeostasis of Drosophila.These findings establish a basis for utilizing PNE in clinical investigations and managing IBD.
基金supported by the National Natural Science Foundation of China (No. 30572085)Natural Science Foundation of Shanxi Province, China(No. 2007011111)
文摘Objective To investigate whether JNK-caspase-dependent apoptotic pathway is involved in Aβ31-35-induced apoptosis of cultured cortical neurons. Methods Cultured cortical neurons were treated with Aβ31-35 (25 μmol/L) for 4 h, 8 h, 16 h and 24 h, respectively. Caspase activities were measured using a spectrophotometer. Levels of c-Jun phosphorylation (p-c-Jun) and Fas ligand (FasL) expression were assessed by immunocytochemistry method and quantified using Image-pro plus11.0 image processing and analysis software. Results Treatment with Aβ31-35 (25 μmol/L) for 24 h induced significant increases in the activities of caspase-3 and caspase-8 in the cortical neurons. Besides, Aβ31-35 could time-dependently enhance the expression of p-c-Jun protein. Moreover, SP600125 application (100 nmol/L) could completely abolish Aβ31-35 neurotoxicity. The increase in FasL expression was detected at 8 h, 16 h and 24 h after Aβ31-35 treatment, and SP600125 (100 nmol/L) significantly inhibited FasL expression. Conclusion JNK-c-Jun-FasL-caspase-dependent extrinsic apoptotic pathway plays a critical role in mediating Aβ31-35-induced apoptosis of cultured neurons.
基金The work was supported by the National Natural Science Foundation of China,Nos.81470656(to YX),82071372(to AL),82074169(to XSM)Guangdong Grant Key Technologies for Treatment of Brain Disorders’,China,No.2018B030332001(to YX)+3 种基金Ningxia Key Research and Development Program Grant(Yinchuan,Ningxia Hui Autonomous Region,China)(to KFS)Program of Introducing Talents of Discipline to Universities,China,No.B14036(to YX,AL,KFS)Outstanding Scholar Program of Bioland Laboratory(Guangzhou Regenerative Medicine and Health Guangdong Laboratory),No.2018GZR110102002(to KFS,AL)Science and Technology Program of Guangzhou,No.202007030012(to KFS and AL).
文摘Luteolin is neuroprotective for retinal ganglion cells and retinal pigment epithelial cells after oxidative injury,whereby it can inhibit microglial neurotoxicity.Therefore,luteolin holds the potential to be useful for treatment of retinal diseases.The purpose of this study was to investigate whether luteolin exhibits neuroprotective effects on rod cells in rd10 mice,a slow photoreceptor-degenerative model of retinitis pigmentosa.Luteolin(100 mg/kg)intraperitoneally injected daily from postnatal day 14(P14)to P25 significantly enhanced the visual performance and retinal light responses of rd10 mice at P25.Moreover,it increased the survival of photoreceptors and improved retinal structure.Mechanistically,luteolin treatment attenuated increases in reactive oxygen species,photoreceptor apoptosis,and reactive gliosis;increased mRNA levels of anti-inflammatory cytokines while lowering that of pro-inflammatory and chemoattractant cytokines;and lowered the ratio of phospho-JNK/JNK.Application of the JNK inhibitor SP600125 exerted a similar protective effect to luteolin,suggesting that luteolin delays photoreceptor degeneration and functional deterioration in rd10 mice through regulation of retinal oxidation and inflammation by inhibiting the JNK pathway.Therefore,luteolin may be useful as a supplementary treatment for retinitis pigmentosa.This study was approved by the Qualified Ethics Committee of Jinan University,China(approval No.IACUC-20181217-02)on December 17,2018.
基金SLB was supported in part by Research Enhancement FundsResearch Development Funds from the Office of the Vice-President for Research, Texas Tech University and the Texas Higher Education Coordin-ating Boardprovided by the Depar-tment of Biological Sciences at Texas Tech University
文摘Programmed cell death (apoptosis) is a key host response to virus infection. Viruses that can modulate host apoptotic responses are likely to gain important opportunities for transmission. Here we review recent studies that demonstrate that particles of Invertebrate iridescent virus 6 (IIV-6) (Iridoviridae, genus Iridovirus), or an IIV-6 virion protein extract, are capable of inducing apoptosis in lepidopteran and coleopteran cells, at concentrations 1000-fold lower than that required to shut-off host macromolecular synthesis. Induction of apoptosis depends on endocytosis of one or more heat-sensitive virion component(s). Studies with a JNK inhibitor (SP600125) indicated that the JNK signaling pathway is significantly involved in apoptosis in IIV-6 infections of Choristoneurafumiferana cells. The genome of IIV-6 codes for an inhibitor of apoptosis iap gene (193R) that encodes a protein of 208 aa with 15% identity and 28% similarity in its amino acid sequence to IAP-3 from Cydia pomonella ganulovirus (CpGV). Transcription of IIV-6 iap did not require prior DNA or protein synthesis, indicating that it is an immediate-early class gene. Transient expression and gene knockdown studies have confirmed the functional nature of the IIV-6 lap gene. We present a tentative model for IIV-6 induction and inhibition of apoptosis in insect cells and discuss the potential applications of these findings in insect pest control.
基金Supported by the Doctor Research Start-up Fund of Liaoning province (20081055) a grant from the Education Department of Liaoning province (2008771)
文摘Objective To investigate the effect of SP600125, a specific c-jun N-terminal protein kinase (JNK) inhibitor, on Staphylococcus aureus (S. aureus)-induced U937 cell death and the underlying mechanism. Methods The human monocytic U937 cells were treated with S. aureus at different time with or without SP600125. Cell apoptosis was analyzed by flow cytometry. JNK, Bax, and caspase-3 activities were detected by Western blotting. Results S. aureus induced apoptosis in cultured U937 cells in a time-dependent manner. Expression of Bax and phospho-JNK significantly increased in S. aureus-treated U937 cells, and the level of activated caspase-3 also increased in a time-dependent manner. Inhibition of JNK with SP600125 significantly inhibited S. aureus-induced apoptosis in U937 cells. Conclusions S. aureus can induce apoptosis in U937 cells by phosphorylation of JNK and activation of Bax and caspase-3. SP600125 protects U937 cells from apoptosis induced by S. aureus via inhibiting the activity of JNK.
文摘Objective To explore the role of miR-202 in multiple myeloma(MM)cells,and study the regulation of miR-202 on drug sensitivity of MM cells.Methods miR-202 and BAFF mRNA levels were detected by real-time PCR.U266 cells were transfected with miR-202-mimics,miR-202-inhibitor,siB AFF and their negative controls.
基金supported by the grants from the Shanghai Municipal Science and Technology Commission(No.14430721400)National Natural Science Foundation(Nos.81700421 and 81670442)Clinical innovative research funding of Shanghai Jiaotong University School of Medicine(No.PY2018-IIC-05)。
文摘Background:Arteriosclerosis obliterans(ASO)is a major cause of adult limb loss worldwide.Autophagy of vascular endothelial cell(VEC)contributes to the ASO progression.However,the molecular mechanism that controls VEC autophagy remains unclear.In this study,we aimed to explore the role of the GRB2 associated binding protein 1(GAB1)in regulating VEC autophagy.Methods:In vivo and in vitro studies were applied to determine the loss of adapt protein GAB1 in association with ASO progression.Histological GAB1 expression was measured in sclerotic vascular intima and normal vascular intima.Gain-and loss-of-function of GAB1 were applied in VEC to determine the effect and potential downstream signaling of GAB1.Results:The autophagy repressor p62 was significantly downregulated in ASO intima as compared to that in healthy donor(0.80 vs.0.20,t=6.43,P<0.05).The expression level of GAB1 mRNA(1.00 vs.0.24,t=7.41,P<0.05)and protein(0.72 vs.0.21,t=5.97,P<0.05)was significantly decreased in ASO group as compared with the control group.Loss of GAB1 led to a remarkable decrease in LC3II(1.19 vs.0.68,t=5.99,P<0.05),whereas overexpression of GAB1 significantly led to a decrease in LC3II level(0.41 vs.0.93,t=7.12,P<0.05).Phosphorylation levels of JNK and p38 were significantly associated with gain-and loss-of-function of GAB1 protein.Conclusion:Loss of GAB1 promotes VEC autophagy which is associated with ASO.GAB1 and its downstream signaling might be potential therapeutic targets for ASO treatment.
文摘Over the past two decades,high sensitivity to HER2-amplified primary breast cancers has been achieved with HER2-targeted therapies.CDK4/6 inhibitors have long been identified as a potential treatment option for advanced breast cancer patients.However,acquired HER2 heterogeneity leading to resistance during the treatment has been identified as a bottleneck.This review focuses on the recent resistance mechanisms identified and potential therapeutic targets for conventional and combination endocrine therapies with CDK4/6 inhibitors by various breast cancer clinical trials and research groups in HER amplified and/or mutated breast cancer tumour.Activating HER2 alterations,JNK pathway,hyperactivated TORC1,co-mutations in HER2 and HER3,phenotypic changes of HER2,and few other advanced findings are identified as potential therapeutic targets in treating current HER2 endocrine therapy-resistant tumour.Along with the HER2-focused resistance mechanisms,we also describe how the microbiome may play a role in breast cancer therapy and its potential for new therapeutic strategies to overcome drug resistance in breast cancers.
基金supported in part by grants from Ministry of Science and Technology of China,the National Basic Research Program of China(973 Program)(Grant Nos.2007CB947202 and 2006CB500701)the National Programs for High Technology Research and Development Program of China(863 Program)(Grant Nos.2006AA02Z173 and 2009DFA32450)+1 种基金National Natural Science Foundation of China(Grant Nos.30725007,30870527 and 30670663)Chinese Academy of Sciences(Bairen plan and Grant No.KSCX1-YW-R-62/84).
文摘Sequential activation of the JNK pathway components,including Rac1/Cdc42,MLKs(mixed-lineage kinases),MKK4/7 and JNKs,plays a required role in many cell death paradigms.Those components are organized by a scaffold protein,POSH(Plenty of SH3’s),to ensure the effective activation of the JNK pathway and cell death upon apoptotic stimuli.We have shown recently that the expression of POSH and MLK family proteins are regulated through protein stability.By generating a variety of mutants,we provide evidence here that the Nterminal half of POSH is accountable for its stability regulation and its over-expression-induced cell death.In addition,POSH’s ability to induce apoptosis is correlated with its stability as well as its MLK binding ability.MLK family’s stability,like that of POSH,requires activation of JNKs.However,we were surprised to find out that the widely used dominant negative(d/n)form of c-Jun could down-regulate MLK’s stability,indicating that peptide from d/n c-Jun can be potentially developed into a therapeutical drug.