Single and multiple n-channel junctionless nanowire transistors (JNTs) are fabricated and experimentally investigated at variable temperatures. Clear current oscillations caused by the quantum-confinement effect are...Single and multiple n-channel junctionless nanowire transistors (JNTs) are fabricated and experimentally investigated at variable temperatures. Clear current oscillations caused by the quantum-confinement effect are observed in the curve of drain current versus gate voltage acquired at low temperatures (10 K-100 K) and variable drain bias voltages (10 mV- 90 mV). Transfer characteristics exhibit current oscillation peaks below flat-band voltage (VFB) at temperatures up to 75 K, which is possibly due to Coulomb-blocking from quantum dots, which are randomly formed by ionized dopants in the just opened n-type one-dimensional (1D) channel of silicon nanowires. However, at higher voltages than VFB, regular current steps are observed in single-channel JNTs, which corresponds to the fully populated subbands in the 1D channel. The subband energy spacing extracted from transconductance peaks accords well with theoretical predication. However, in multiple-channel JNT, only tiny oscillation peaks of the drain current are observed due to the combination of the drain current from multiple channels with quantum-confinement effects.展开更多
基金Project supported partly by the National Basic Research Program of China(Grant No.2010CB934104)the National Natural Science Foundation of China(Grant Nos.61376069 and 61327813)
文摘Single and multiple n-channel junctionless nanowire transistors (JNTs) are fabricated and experimentally investigated at variable temperatures. Clear current oscillations caused by the quantum-confinement effect are observed in the curve of drain current versus gate voltage acquired at low temperatures (10 K-100 K) and variable drain bias voltages (10 mV- 90 mV). Transfer characteristics exhibit current oscillation peaks below flat-band voltage (VFB) at temperatures up to 75 K, which is possibly due to Coulomb-blocking from quantum dots, which are randomly formed by ionized dopants in the just opened n-type one-dimensional (1D) channel of silicon nanowires. However, at higher voltages than VFB, regular current steps are observed in single-channel JNTs, which corresponds to the fully populated subbands in the 1D channel. The subband energy spacing extracted from transconductance peaks accords well with theoretical predication. However, in multiple-channel JNT, only tiny oscillation peaks of the drain current are observed due to the combination of the drain current from multiple channels with quantum-confinement effects.