期刊文献+
共找到2,028篇文章
< 1 2 102 >
每页显示 20 50 100
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer
1
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
2
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
下载PDF
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem
3
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved Harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
下载PDF
Research on Flexible Job Shop Scheduling Optimization Based on Segmented AGV 被引量:2
4
作者 Qinhui Liu Nengjian Wang +3 位作者 Jiang Li Tongtong Ma Fapeng Li Zhijie Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期2073-2091,共19页
As a typical transportation tool in the intelligent manufacturing system,Automatic Guided Vehicle(AGV)plays an indispensable role in the automatic production process of the workshop.Therefore,integrating AGV resources... As a typical transportation tool in the intelligent manufacturing system,Automatic Guided Vehicle(AGV)plays an indispensable role in the automatic production process of the workshop.Therefore,integrating AGV resources into production scheduling has become a research hotspot.For the scheduling problem of the flexible job shop adopting segmented AGV,a dual-resource scheduling optimization mathematical model of machine tools and AGVs is established by minimizing the maximum completion time as the objective function,and an improved genetic algorithmis designed to solve the problem in this study.The algorithmdesigns a two-layer codingmethod based on process coding and machine tool coding and embeds the task allocation of AGV into the decoding process to realize the real dual resource integrated scheduling.When initializing the population,three strategies are designed to ensure the diversity of the population.In order to improve the local search ability and the quality of the solution of the genetic algorithm,three neighborhood structures are designed for variable neighborhood search.The superiority of the improved genetic algorithmand the influence of the location and number of transfer stations on scheduling results are verified in two cases. 展开更多
关键词 Segmented AGV flexible job shop improved genetic algorithm scheduling optimization
下载PDF
A Novel Collaborative Evolutionary Algorithm with Two-Population for Multi-Objective Flexible Job Shop Scheduling 被引量:1
5
作者 CuiyuWang Xinyu Li Yiping Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1849-1870,共22页
Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enabl... Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enables any machine from a certain set to handle an operation,and this is an NP-hard problem.Furthermore,due to the requirements in real-world cases,multi-objective FJS is increasingly widespread,thus increasing the challenge of solving the FJS problems.As a result,it is necessary to develop a novel method to address this challenge.To achieve this goal,a novel collaborative evolutionary algorithmwith two-population based on Pareto optimality is proposed for FJS,which improves the solutions of FJS by interacting in each generation.In addition,several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS,which has discovered some new Pareto solutions in the well-known benchmark problems,and some solutions can dominate the solutions of some other methods. 展开更多
关键词 Multi-objective flexible job shop scheduling Pareto archive set collaborative evolutionary crowd similarity
下载PDF
An Effective Neighborhood Solution Clipping Method for Large-Scale Job Shop Scheduling Problem
6
作者 Sihan Wang Xinyu Li Qihao Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1871-1890,共20页
The job shop scheduling problem(JSSP)is a classical combinatorial optimization problem that exists widely in diverse scenarios of manufacturing systems.It is a well-known NP-hard problem,when the number of jobs increa... The job shop scheduling problem(JSSP)is a classical combinatorial optimization problem that exists widely in diverse scenarios of manufacturing systems.It is a well-known NP-hard problem,when the number of jobs increases,the difficulty of solving the problem exponentially increases.Therefore,a major challenge is to increase the solving efficiency of current algorithms.Modifying the neighborhood structure of the solutions can effectively improve the local search ability and efficiency.In this paper,a genetic Tabu search algorithm with neighborhood clipping(GTS_NC)is proposed for solving JSSP.A neighborhood solution clipping method is developed and embedded into Tabu search to improve the efficiency of the local search by clipping the search actions of unimproved neighborhood solutions.Moreover,a feasible neighborhood solution determination method is put forward,which can accurately distinguish feasible neighborhood solutions from infeasible ones.Both of the methods are based on the domain knowledge of JSSP.The proposed algorithmis compared with several competitive algorithms on benchmark instances.The experimental results show that the proposed algorithm can achieve superior results compared to other competitive algorithms.According to the numerical results of the experiments,it is verified that the neighborhood solution clippingmethod can accurately identify the unimproved solutions and reduces the computational time by at least 28%. 展开更多
关键词 job shop scheduling MAKESPAN Tabu search genetic algorithm
下载PDF
Applying Job Shop Scheduling to SMEs Manufacturing Platform to Revitalize B2B Relationship
7
作者 Yeonjee Choi Hyun Suk Hwang Chang Soo Kim 《Computers, Materials & Continua》 SCIE EI 2023年第3期4901-4916,共16页
A small and medium enterprises(SMEs)manufacturing platform aims to perform as a significant revenue to SMEs and vendors by providing scheduling and monitoring capabilities.The optimal job shop scheduling is generated ... A small and medium enterprises(SMEs)manufacturing platform aims to perform as a significant revenue to SMEs and vendors by providing scheduling and monitoring capabilities.The optimal job shop scheduling is generated by utilizing the scheduling system of the platform,and a minimum production time,i.e.,makespan decides whether the scheduling is optimal or not.This scheduling result allows manufacturers to achieve high productivity,energy savings,and customer satisfaction.Manufacturing in Industry 4.0 requires dynamic,uncertain,complex production environments,and customer-centered services.This paper proposes a novel method for solving the difficulties of the SMEs manufacturing by applying and implementing the job shop scheduling system on a SMEs manufacturing platform.The primary purpose of the SMEs manufacturing platform is to improve the B2B relationship between manufacturing companies and vendors.The platform also serves qualified and satisfactory production opportunities for buyers and producers by meeting two key factors:early delivery date and fulfillment of processing as many orders as possible.The genetic algorithm(GA)-based scheduling method results indicated that the proposed platform enables SME manufacturers to obtain optimized schedules by solving the job shop scheduling problem(JSSP)by comparing with the real-world data from a textile weaving factory in South Korea.The proposed platform will provide producers with an optimal production schedule,introduce new producers to buyers,and eventually foster relationships and mutual economic interests. 展开更多
关键词 Manufacturing platform job shop scheduling problem(JSSP) genetic algorithm optimization textile process
下载PDF
SOLVING FLEXIBLE JOB SHOP SCHEDULING PROBLEM BY GENETIC ALGORITHM 被引量:13
8
作者 乔兵 孙志峻 朱剑英 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期108-112,共5页
The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an oper... The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm. 展开更多
关键词 flexible job shop gene tic algorithm job shop scheduling
下载PDF
多功能机床环境下的Job Shop问题研究 被引量:1
9
作者 李国富 叶飞帆 《中国管理科学》 CSSCI 2000年第4期24-28,共5页
本文引入工序机的概念描述加工系统的资源 ,建立了面向多功能加工机床的JobShop作业计划模型 ,用遗传算法对所建的模型进行优化。在遗传算法优化搜索的基础上 ,利用工件、工序机和实际机床之间的动态调度使作业计划更趋合理。最后给出... 本文引入工序机的概念描述加工系统的资源 ,建立了面向多功能加工机床的JobShop作业计划模型 ,用遗传算法对所建的模型进行优化。在遗传算法优化搜索的基础上 ,利用工件、工序机和实际机床之间的动态调度使作业计划更趋合理。最后给出数值试验结果。 展开更多
关键词 多功能机床 job shop 遗传算法 生产作业计划 工序机 动态调度 模型优化 加工系统
下载PDF
考虑有限缓存区的Job Shop加工与搬运集成调度 被引量:2
10
作者 张维存 左天帅 张博涵 《运筹与管理》 CSSCI CSCD 北大核心 2020年第11期213-222,共10页
在Job Shop环境下,以最小化最大完工时间为目标,考虑了搬运设备与有限缓存区对加工过程的影响,建立了带有限缓存区的Job Shop加工与搬运集成调度模型,并设计了改进的人工蜂群优化算法求解此问题。首先,在算法中引入了引领蜂和跟随蜂角... 在Job Shop环境下,以最小化最大完工时间为目标,考虑了搬运设备与有限缓存区对加工过程的影响,建立了带有限缓存区的Job Shop加工与搬运集成调度模型,并设计了改进的人工蜂群优化算法求解此问题。首先,在算法中引入了引领蜂和跟随蜂角色互换的机制,可更好的兼顾全局广泛寻优和局部精确寻优。其次,基于问题的特殊性,工序既是加工任务也是搬运任务,所以在编码方式上采取基于工序编码,便于算法运行过程中解码计算。然后,在解码过程中,为提高算法运行效率,设计了如何确定解码加工任务和搬运任务的启发式信息。最后,通过标准测例实验比较,给出了本文G-ABC算法种群规模的建议取值范围,并证明了G-ABC算法的有效性,启发式信息的有效性以及缓存区容量设置对调度结果的影响。 展开更多
关键词 job shop 有限缓存区 搬运设备 集成调度 蜂群算法
下载PDF
Infeasibility test algorithm and fast repair algorithm of job shop scheduling problem
11
作者 孙璐 黄志 +1 位作者 张惠民 顾文钧 《Journal of Southeast University(English Edition)》 EI CAS 2011年第1期88-91,共4页
To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algori... To diagnose the feasibility of the solution of a job-shop scheduling problem(JSSP),a test algorithm based on diagraph and heuristic search is developed and verified through a case study.Meanwhile,a new repair algorithm for modifying an infeasible solution of the JSSP to become a feasible solution is proposed for the general JSSP.The computational complexity of the test algorithm and the repair algorithm is both O(n) under the worst-case scenario,and O(2J+M) for the repair algorithm under the best-case scenario.The repair algorithm is not limited to specific optimization methods,such as local tabu search,genetic algorithms and shifting bottleneck procedures for job shop scheduling,but applicable to generic infeasible solutions for the JSSP to achieve feasibility. 展开更多
关键词 INFEASIBILITY job shop scheduling repairing algorithm
下载PDF
考虑工序相关性的动态Job shop调度问题启发式算法 被引量:33
12
作者 熊禾根 李建军 +2 位作者 孔建益 杨金堂 蒋国璋 《机械工程学报》 EI CAS CSCD 北大核心 2006年第8期50-55,共6页
提出一类考虑工序相关性的、工件批量到达的动态Job shop调度问题,在对工序相关性进行了定义和数学描述的基础上,进一步建立了动态Job shop调度问题的优化模型。设计了一种组合式调度规则RAN(FCFS,ODD),并提出了基于规则的启发式算法以... 提出一类考虑工序相关性的、工件批量到达的动态Job shop调度问题,在对工序相关性进行了定义和数学描述的基础上,进一步建立了动态Job shop调度问题的优化模型。设计了一种组合式调度规则RAN(FCFS,ODD),并提出了基于规则的启发式算法以及该类动态Job shop调度问题的算例生成方法。为验证算法和比较评估调度规则的性能,对算例采用文献提出的7种调度规则和RAN(FCFS,ODD)进行了仿真调度,对调度结果的分析表明了算法的有效性和RAN(FCFS,ODD)调度规则求解所提出的动态Job Shop调度问题的优越性能。 展开更多
关键词 动态job shop调度 工序相关性 启发式算法 调度规则 仿真
下载PDF
多目标柔性Job Shop调度问题的技术现状和发展趋势 被引量:19
13
作者 吴秀丽 孙树栋 +1 位作者 杨展 翟颖妮 《计算机应用研究》 CSCD 北大核心 2007年第3期1-5,9,共6页
首先概述了多目标柔性Job Shop调度问题的基本概念,包括问题定义、常用假设条件、性能指标和问题的分类,讨论了其复杂性;其次,分别从建模、优化方法和原型系统研究方面综述了其发展过程和研究现状,对一类更加通用的多目标柔性Job Shop... 首先概述了多目标柔性Job Shop调度问题的基本概念,包括问题定义、常用假设条件、性能指标和问题的分类,讨论了其复杂性;其次,分别从建模、优化方法和原型系统研究方面综述了其发展过程和研究现状,对一类更加通用的多目标柔性Job Shop问题进行了简单的文献综述;最后指出了现有研究存在的问题与不足,并对未来的发展趋势进行了探讨。 展开更多
关键词 多目标 柔性工作车间调度 建模 优化方法 原型系统
下载PDF
免疫模拟退火算法及其在柔性动态Job Shop中的应用 被引量:15
14
作者 余建军 孙树栋 +1 位作者 王军强 杜先进 《中国机械工程》 EI CAS CSCD 北大核心 2007年第7期793-799,共7页
针对车间作业调度问题,在深入分析免疫算法和模拟退火算法的基础上,将两种算法巧妙结合,提出免疫模拟退火算法。该算法引入了免疫记忆、抽取疫苗和接种疫苗等免疫机制,有助于优良个体和基因的保留和利用,提高了算法收敛性,而且其基于概... 针对车间作业调度问题,在深入分析免疫算法和模拟退火算法的基础上,将两种算法巧妙结合,提出免疫模拟退火算法。该算法引入了免疫记忆、抽取疫苗和接种疫苗等免疫机制,有助于优良个体和基因的保留和利用,提高了算法收敛性,而且其基于概率突跳特性的爬山性能可以避免早熟现象。针对西安航空发动机(集团)有限公司的柔性动态Job Shop,分别用模拟退火算法、免疫算法和免疫模拟退火算法进行了仿真和比较,研究结果表明,免疫模拟退火算法比单一算法性能更优,是求解柔性动态Job Shop问题的有效实用算法。 展开更多
关键词 免疫算法 模拟退火算法 免疫模拟退火算法 柔性 job shop
下载PDF
基于多Agent的Job Shop调度方法研究 被引量:21
15
作者 饶运清 谢畅 李淑霞 《中国机械工程》 EI CAS CSCD 北大核心 2004年第10期873-877,共5页
针对JobShop调度问题 ,提出基于多Agent的车间调度模型 ,实现调度甘特图的自动生成。在此基础上 ,设计了多Agent分组协作机制 ;实现了多目标优化调度 ,提高了调度优化算法的实用性和优化效果 ;分析了车间调度中各类干扰因素的特点 ,实... 针对JobShop调度问题 ,提出基于多Agent的车间调度模型 ,实现调度甘特图的自动生成。在此基础上 ,设计了多Agent分组协作机制 ;实现了多目标优化调度 ,提高了调度优化算法的实用性和优化效果 ;分析了车间调度中各类干扰因素的特点 ,实现动态调度 ,提高了系统的适应性和健壮性。最后给出了实例验证。 展开更多
关键词 作业调度 动态调度 代理 多AGENT系统
下载PDF
一种求解Job Shop问题的合作型协同进化算法 被引量:8
16
作者 周泓 王建 +1 位作者 上官春霞 师瑞峰 《中国机械工程》 EI CAS CSCD 北大核心 2007年第20期2449-2455,共7页
针对Job Shop调度问题,提出了一种改进的合作型协同进化算法。根据机器数量"自然"分割种群,每个种群对应一台机器,个体以机器前工件的优先列表为编码;将静态繁殖理论引入遗传算子,并通过三种共生伙伴选择方式,利用改进的基于... 针对Job Shop调度问题,提出了一种改进的合作型协同进化算法。根据机器数量"自然"分割种群,每个种群对应一台机器,个体以机器前工件的优先列表为编码;将静态繁殖理论引入遗传算子,并通过三种共生伙伴选择方式,利用改进的基于优先列表的G&T算法解码来评价个体;最后采用一种更新技术和动态群体更新策略来加快算法收敛。通过对Job Shop基准问题的优化,该算法获得了比传统的遗传算法更好的结果。 展开更多
关键词 协同进化 作业车间调度 解码 共生伙伴
下载PDF
基于遗传算法的Job Shop调度研究进展 被引量:34
17
作者 王凌 郑大钟 《控制与决策》 EI CSCD 北大核心 2001年第B11期641-646,共6页
Job Shop是典型的调度问题 ,遗传算法一直是计算智能的主要研究对象 ,因此基于遗传算法的Job Shop研究在学术界和工程界受到极大的关注。对近年来这方面的研究情况进行了较全面的综述 ,其中涉及编码、算法改进和比较、特征分析、混合算... Job Shop是典型的调度问题 ,遗传算法一直是计算智能的主要研究对象 ,因此基于遗传算法的Job Shop研究在学术界和工程界受到极大的关注。对近年来这方面的研究情况进行了较全面的综述 ,其中涉及编码、算法改进和比较、特征分析、混合算法、拓宽性、实际应用和调度器开发等 。 展开更多
关键词 遗传算法 优化 jobshop调度 NP问题 机器学习
下载PDF
基于遗传算法求解Job Shop调度优化的新方法 被引量:9
18
作者 周辉仁 郑丕谔 +1 位作者 安小会 宗蕴 《系统仿真学报》 CAS CSCD 北大核心 2009年第11期3295-3298,3306,共5页
针对Job Shop调度问题,提出了一种遗传算法编码新方法和矩阵解码方法。该方法根据问题的特点,采用一种按工序进行总体排序染色体编码方案,并采用矩阵解码,解码时体现了编码与调度方案一一对应,并且该编码方案有多种交叉操作算子可用,不... 针对Job Shop调度问题,提出了一种遗传算法编码新方法和矩阵解码方法。该方法根据问题的特点,采用一种按工序进行总体排序染色体编码方案,并采用矩阵解码,解码时体现了编码与调度方案一一对应,并且该编码方案有多种交叉操作算子可用,不需要专门设计算子。算例计算结果表明,基于该编码方案的遗传算法是有效的,能适用解决Job Shop调度问题,通过比较,用该编码方案的遗传算法优化Job Shop调度操作简单并且收敛速度快。 展开更多
关键词 job shop调度 遗传算法 编码方法 矩阵解码 优化
下载PDF
扰动环境下Job Shop瓶颈识别方法研究 被引量:13
19
作者 王刚 王军强 +1 位作者 孙树栋 袁宗寅 《机械科学与技术》 CSCD 北大核心 2010年第12期1697-1702,共6页
针对Job Shop作业管理层面的瓶颈识别,改变传统将瓶颈识别独立于调度优化方案的做法,先进行瓶颈充分利用再进行瓶颈系统辨识,不仅保证了瓶颈的有效识别,而且保证了瓶颈的充分利用。笔者给出了工序级瓶颈识别指标,提出了瓶颈分级识别策略... 针对Job Shop作业管理层面的瓶颈识别,改变传统将瓶颈识别独立于调度优化方案的做法,先进行瓶颈充分利用再进行瓶颈系统辨识,不仅保证了瓶颈的有效识别,而且保证了瓶颈的充分利用。笔者给出了工序级瓶颈识别指标,提出了瓶颈分级识别策略,采用遗传算法和优化仿真结合的方法实现瓶颈的充分利用,其中,利用遗传算法优化零件的投料顺序,采用Plant-Simulation建立模拟仿真模型,设置设备故障率、平均故障修复时间、缓冲容量等实际扰动,经过大量的生产过程仿真,基于瓶颈出现率进行瓶颈识别,并输出优化调度方案。算例验证表明了瓶颈识别方法的有效性。 展开更多
关键词 瓶颈识别 作业调度 仿真
下载PDF
解决JOB SHOP问题的粒子群优化算法 被引量:10
20
作者 潘全科 王文宏 +1 位作者 潘群 朱剑英 《机械科学与技术》 CSCD 北大核心 2006年第6期675-679,共5页
设计了2种解决Job shop问题的粒子群算法,即实数编码的粒子群调度算法和工序编码的粒子群调度算法。工序编码的粒子群调度算法更符合Job shop问题的特点,优化性能相对高。但粒子群调度算法容易陷入局部最优。为了提高优化性能,将粒子群... 设计了2种解决Job shop问题的粒子群算法,即实数编码的粒子群调度算法和工序编码的粒子群调度算法。工序编码的粒子群调度算法更符合Job shop问题的特点,优化性能相对高。但粒子群调度算法容易陷入局部最优。为了提高优化性能,将粒子群算法和模拟退火算法结合,得到了粒子群-模拟退火混合调度算法。仿真结果表明了算法的有效性。 展开更多
关键词 job shop 调度问题 粒子群优化 模拟退火算法
下载PDF
上一页 1 2 102 下一页 到第
使用帮助 返回顶部