AIM: To determine hip joint center(HJC) location on hip arthroplasty population comparing predictive and functional approaches with radiographic measurements.METHODS: The distance between the HJC and the mid-pelvis wa...AIM: To determine hip joint center(HJC) location on hip arthroplasty population comparing predictive and functional approaches with radiographic measurements.METHODS: The distance between the HJC and the mid-pelvis was calculated and compared between the three approaches. The localisation error between the predictive and functional approach was compared using the radiographic measurements as the reference. The operated leg was compared to the non-operated leg.RESULTS: A significant difference was found for the distance between the HJC and the mid-pelvis when comparing the predictive and functional method. The functional method leads to fewer errors. A statistical difference was found for the localization error between the predictive and functional method. The functional method is twice more precise.CONCLUSION: Although being more individualized, the functional method improves HJC localization and should be used in three-dimensional gait analysis.展开更多
Erosion and transport of soil has worldwide implications for agriculture, landscape stability, climate, natural hazards, and clean, renewable resources of water and air. Assured access to clean water and a healthy and...Erosion and transport of soil has worldwide implications for agriculture, landscape stability, climate, natural hazards, and clean, renewable resources of water and air. Assured access to clean water and a healthy and safe environment requires an ethic of conservation and protection. The minimum scale in which these principles apply successfully is basin wide. These are the fundamental concerns of the Sino-US Centers for Soil and Water Conservation and Environmental Protection.展开更多
We propose a new method for the customized design of hip exoskeletons based on the optimization of the humanmachine physical interface to improve user comfort. The approach is based on mechanisms designed to follow th...We propose a new method for the customized design of hip exoskeletons based on the optimization of the humanmachine physical interface to improve user comfort. The approach is based on mechanisms designed to follow the natural trajectories of the human hip as the flexion angle varies during motion. The motions of the hip joint center with variation of the flexion angle were measured and the resulting trajectory was modeled. An exoskeleton mechanism capable to follow the hip center's movement was designed to cover the full motion ranges of flexion and abduction angles, and was adopted in a lower extremity assistive exoskeleton. The resulting design can reduce human-machine interaction forces by 24.1% and 76.0% during hip flexion and abduction, respectively, leading to a more ergonomic and comfortable-to-wear exoskeleton system. The humanexoskeleton model was analyzed to further validate the decrease of the hip joint internal force during hip joint flexion or abduction by applying the resulting design.展开更多
In this research, the influence of such joint geometric parameters as weld width and reinforcement on shape ~actor of butt joint with center crack subjected to static loading was investigated by finite element analyse...In this research, the influence of such joint geometric parameters as weld width and reinforcement on shape ~actor of butt joint with center crack subjected to static loading was investigated by finite element analyses method. According to the analytical resuhs, a well fracture resistant joint shape of butt joint with center crack has been approved.展开更多
Straight-line compliant mechanisms are important building blocks to design a linear-motion stage, which is very useful in precision applications. However, only a few configurations of straight-line compliant mechanism...Straight-line compliant mechanisms are important building blocks to design a linear-motion stage, which is very useful in precision applications. However, only a few configurations of straight-line compliant mechanisms are applicable. To construct more kinds of them, an approach to design large-displacement straight-line flexural mechanisms with rotational flexural joints is proposed, which is based on a viewpoint that the straight-line motion is regarded as a compromise of rigid and compliant parasitic motion of a rotational flexural joint. An analytical design method based on the Taylor series expansion is proposed to quickly obtain an approximate solution. To illustrate and verify the proposed method, two kinds of flexural joints, cross-axis hinge and leaf-type isosceles-trapezoidal flexural(LITF) pivot are used to reconstruct straight-line flexural mechanisms. Their performances are obtained by analytic and FEA method respectively. The comparisons of the results show the accuracy of the approach. Both examples show that the proposed approach can convert a large-deflection flexural joint into approximate straight-line mechanism with a high linearity that is higher than 5 000 within 5 man displacement. This can lead to a new way to design, analyze or optimize straight-line flexure mechanisms.展开更多
With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. Howev...With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. However, due to the complexity of SAR imaging mechanism, interpreting targets in SAR images is a tough problem. This paper presents a new aircraft interpretation method based on the joint time-frequency analysis and multi-dimensional contrasting of basic structures. Moreover, SAR data acquisition experiment is designed for interpreting the aircraft. Analyzing the experiment data with our method, the result shows that the proposed method largely makes use of the SAR data information. The reasonable results can provide some auxiliary support for the SAR images manual interpretation.展开更多
基金Canadian Institute of Health Science(CIHR)and Zimmer,Warsaw,United States
文摘AIM: To determine hip joint center(HJC) location on hip arthroplasty population comparing predictive and functional approaches with radiographic measurements.METHODS: The distance between the HJC and the mid-pelvis was calculated and compared between the three approaches. The localisation error between the predictive and functional approach was compared using the radiographic measurements as the reference. The operated leg was compared to the non-operated leg.RESULTS: A significant difference was found for the distance between the HJC and the mid-pelvis when comparing the predictive and functional method. The functional method leads to fewer errors. A statistical difference was found for the localization error between the predictive and functional method. The functional method is twice more precise.CONCLUSION: Although being more individualized, the functional method improves HJC localization and should be used in three-dimensional gait analysis.
文摘Erosion and transport of soil has worldwide implications for agriculture, landscape stability, climate, natural hazards, and clean, renewable resources of water and air. Assured access to clean water and a healthy and safe environment requires an ethic of conservation and protection. The minimum scale in which these principles apply successfully is basin wide. These are the fundamental concerns of the Sino-US Centers for Soil and Water Conservation and Environmental Protection.
基金Project supported by the National Natural Science Foundation of China(No.51221004)
文摘We propose a new method for the customized design of hip exoskeletons based on the optimization of the humanmachine physical interface to improve user comfort. The approach is based on mechanisms designed to follow the natural trajectories of the human hip as the flexion angle varies during motion. The motions of the hip joint center with variation of the flexion angle were measured and the resulting trajectory was modeled. An exoskeleton mechanism capable to follow the hip center's movement was designed to cover the full motion ranges of flexion and abduction angles, and was adopted in a lower extremity assistive exoskeleton. The resulting design can reduce human-machine interaction forces by 24.1% and 76.0% during hip flexion and abduction, respectively, leading to a more ergonomic and comfortable-to-wear exoskeleton system. The humanexoskeleton model was analyzed to further validate the decrease of the hip joint internal force during hip joint flexion or abduction by applying the resulting design.
文摘In this research, the influence of such joint geometric parameters as weld width and reinforcement on shape ~actor of butt joint with center crack subjected to static loading was investigated by finite element analyses method. According to the analytical resuhs, a well fracture resistant joint shape of butt joint with center crack has been approved.
基金supported by National Natural Science Foundation of China(Grant No.51275552)Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201234)
文摘Straight-line compliant mechanisms are important building blocks to design a linear-motion stage, which is very useful in precision applications. However, only a few configurations of straight-line compliant mechanisms are applicable. To construct more kinds of them, an approach to design large-displacement straight-line flexural mechanisms with rotational flexural joints is proposed, which is based on a viewpoint that the straight-line motion is regarded as a compromise of rigid and compliant parasitic motion of a rotational flexural joint. An analytical design method based on the Taylor series expansion is proposed to quickly obtain an approximate solution. To illustrate and verify the proposed method, two kinds of flexural joints, cross-axis hinge and leaf-type isosceles-trapezoidal flexural(LITF) pivot are used to reconstruct straight-line flexural mechanisms. Their performances are obtained by analytic and FEA method respectively. The comparisons of the results show the accuracy of the approach. Both examples show that the proposed approach can convert a large-deflection flexural joint into approximate straight-line mechanism with a high linearity that is higher than 5 000 within 5 man displacement. This can lead to a new way to design, analyze or optimize straight-line flexure mechanisms.
文摘With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. However, due to the complexity of SAR imaging mechanism, interpreting targets in SAR images is a tough problem. This paper presents a new aircraft interpretation method based on the joint time-frequency analysis and multi-dimensional contrasting of basic structures. Moreover, SAR data acquisition experiment is designed for interpreting the aircraft. Analyzing the experiment data with our method, the result shows that the proposed method largely makes use of the SAR data information. The reasonable results can provide some auxiliary support for the SAR images manual interpretation.