In a reliability comparative test, the joint censoring model is usually adopted to evaluate the performances of units with the same facility. However, most researchers ignore the pos- sibility that there is more than ...In a reliability comparative test, the joint censoring model is usually adopted to evaluate the performances of units with the same facility. However, most researchers ignore the pos- sibility that there is more than one factor for the failure when a test unit fails. To solve this problem, we consider a joint Type-II hybrid censoring model for the analysis of exponential competing failure data. Based on the maximum likelihood theory, we compute the maximum likelihood estimators (MLEs) of parameters and then obtain the condition ensuring MLEs existence for every unknown parameter. Then we derive the conditional exact distributions and corresponding moment properties for parameters by the moment generating function (MGF). A Monte-Carlo simulation is conducted to compare the performances of different ways. And finally, we conduct a numerical example to illustrate the proposed method.展开更多
Assuming that the failure time under different risk factors follows the independent exponential distribution, a joint model under Type-I hybrid censoring is addressed in detail. Based on the Maximum likelihood estimat...Assuming that the failure time under different risk factors follows the independent exponential distribution, a joint model under Type-I hybrid censoring is addressed in detail. Based on the Maximum likelihood estimates (MLEs) of unknown parameters, we obtain exact distributions of MLEs by using the moment generating function (MGF). Confidence intervals (CIs) of parameters are constructed through both the exact method and the parametric bootstrap method. Then we compare the performances of different methods by Monte Carlo simulations. Finally, the validity of the proposed models and methods are demonstrated by a numerical example.展开更多
基金supported by the National Natural Science Foundation of China(71171164)
文摘In a reliability comparative test, the joint censoring model is usually adopted to evaluate the performances of units with the same facility. However, most researchers ignore the pos- sibility that there is more than one factor for the failure when a test unit fails. To solve this problem, we consider a joint Type-II hybrid censoring model for the analysis of exponential competing failure data. Based on the maximum likelihood theory, we compute the maximum likelihood estimators (MLEs) of parameters and then obtain the condition ensuring MLEs existence for every unknown parameter. Then we derive the conditional exact distributions and corresponding moment properties for parameters by the moment generating function (MGF). A Monte-Carlo simulation is conducted to compare the performances of different ways. And finally, we conduct a numerical example to illustrate the proposed method.
基金Supported by the National Natural Science Foundation of China(No.71571144)Natural Science Basic Research Program of Shaanxi Province(2015JM1003)+1 种基金the Program of International Cooperation and Exchanges in Science and Technology Funded by Shanxi Province(2016KW-033)Shanxi Scholarship Council of China(2016-015)
文摘Assuming that the failure time under different risk factors follows the independent exponential distribution, a joint model under Type-I hybrid censoring is addressed in detail. Based on the Maximum likelihood estimates (MLEs) of unknown parameters, we obtain exact distributions of MLEs by using the moment generating function (MGF). Confidence intervals (CIs) of parameters are constructed through both the exact method and the parametric bootstrap method. Then we compare the performances of different methods by Monte Carlo simulations. Finally, the validity of the proposed models and methods are demonstrated by a numerical example.