The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, ...The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, and sound welds were obtained at a rotation speed of 1000 r/min and a welding speed of 80 mm/min. Complicated microstructure was formed in the nugget, in which vortex-like pattern and lamella structure could be found. No intermetallic compounds were found in the nugget. The hardness distribution indicates that the hardness at the copper side of the nugget is higher than that at the aluminum alloy side, and the hardness at the bottom of the nugget is generally higher than that in other regions. The ultimate tensile strength and elongation of the dissimilar welds are 152 MPa and 6.3%, respectively. The fracture surface observation shows that the dissimilar joints fail with a ductile-brittle mixed fracture mode durin~ tensile test.展开更多
Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint ...Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.展开更多
Laser-metal inert-gas(MIG)hybrid welding-brazing was applied to the butt joint of 6061-T6 aluminum alloy and 304 stainless steel.The microstructure and mechanical properties of the joint were studied.An excellent join...Laser-metal inert-gas(MIG)hybrid welding-brazing was applied to the butt joint of 6061-T6 aluminum alloy and 304 stainless steel.The microstructure and mechanical properties of the joint were studied.An excellent joint-section shape was achieved from good wettability on both sides of the stainless steel.Scanning electron microscopy,energy-dispersive spectroscopy and X-ray diffractometry indicated an intermetallic compound(IMC)layer at the 6061-T6/304 interface.The IMC thickness was controlled to be^2μm,which was attributed to the advantage of the laser-MIG hybrid method.Fe3Al dominated in the IMC layer at the interface between the stainless steel and the back reinforcement.The IMC layer in the remaining regions consisted mainly of Fe4Al13.A thinner IMC layer and better wettability on both sides of the stainless steel were obtained,because of the optimized energy distribution from a combination of a laser beam with a MIG arc.The average tensile strength of the joint with reinforcement using laser-MIG hybrid process was improved to be 174 MPa(60%of the 6061-T6 tensile strength),which was significantly higher than that of the joint by traditional MIG process.展开更多
Friction stir welding of dissimilar Al/Mg thick plates still faces severe challenges, such as poor formability, formation of thick intermetallic compounds, and low joint strength. In this work, two joint configuration...Friction stir welding of dissimilar Al/Mg thick plates still faces severe challenges, such as poor formability, formation of thick intermetallic compounds, and low joint strength. In this work, two joint configurations, namely inclined butt(conventional butt) and serrated interlocking(innovative butt), are proposed for improving weld formation and joint quality. The results show that a continuous and straight intermetallic compound layer appears at the Mg side interface in conventional butt joint, and the maximum average thickness reaches about 60.1 μm.Additionally, the Mg side interface also partially melts, forming a eutectic structure composed of Mg solid solution and Al_(12)Mg_(17) phase.For the innovative butt joint, the Mg side interface presents the curved interlocking feature, and intermetallic compounds can be reduced to less than 10 μm. The joint strength of innovative butt joint is more than three times that of conventional butt joint. This is due to the interlocking effect and thin intermetallic compounds in the innovative joint.展开更多
Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properti...Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17(γ) and Al3Mg2(β) at the welding zone with a thickness(< 3.5 μm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint.展开更多
The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by m...The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by means of resistance spot welding (RSW) and ultrasonic assistance welding (UAW). The joining mechanism of lap joint was analyzed by OM, TEM on microstructure at the interface of lap joints and XPS and IR spectra was discussed based on the following different ones: mechanical-interlocking, diffusion bond and coordination bond. The results showed that it was the combined action that played an important role in the effective joining work. Besides, ultrasonic assistance was used in the study to aid welding process based on its high-frequency ultrasonic vibration, which made joints shaping better and improved tensile strength visibly contrast to joints with the same lower heat input parameters.展开更多
Cold metal transfer (CMT) welding of nickel-coated Q235 steel studs with 606l Al alloy was carried out using ER4043 as filler metal. The welding process was stable, and appearance of weld formed well without surface...Cold metal transfer (CMT) welding of nickel-coated Q235 steel studs with 606l Al alloy was carried out using ER4043 as filler metal. The welding process was stable, and appearance of weld formed well without surface defect under the parameters of welding current 121 A, welding voltage 15.4 V and welding speed 6 r/min. The microstructure of fiUer metal was analyzed by means of scanning electron microscopy. The filler metal and 6061 Al alloy were fused to form fusion welding interface, the fusion zone had a good bonding without any micro defect. The steel stud did not melt and brazing interface was formed between the filler metal and steel stud. Two different reaction layers existed in the brazing interface, the Fe2Al5 layer about 10 -12 p^m formed near the steel stud side, and the other layer was mainly composed of FeAl3. Nickel-rich zone was formed in the root toe area of the fillet weld, which was mainly composed of Al3Ni2. The tensile tests showed that the maximum shearing strength of the joints was 129 MPa. The joint was brittle fractured in the intermetallic compound layer where plenty of FeAl3 were distributed continuously.展开更多
Expansion joints silicone sealants used in high speed railway construction suffer from ultraviolet radiation(UV), high temperature combined with the alkaline environment. To evaluate the durability and analyse the a...Expansion joints silicone sealants used in high speed railway construction suffer from ultraviolet radiation(UV), high temperature combined with the alkaline environment. To evaluate the durability and analyse the ageing mechanism, six one-component silicone sealants from different companies were selected and subjected to accelerated ageing tests including UV, thermal and alkali ageing treatments. The ageing effects on the performance of the sealants were evaluated via the appearance and the mechanical property changes. The changes in molecular structure were studied by means of Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC) and thermogravimetry(TG). This study revealed that different materials displayed different sensibilities to the ageing methods, in which 15 %-20 % decreases of mechanical properties could be observed under UV radiation test, owning the most significant effects. Structure analysis showed that the physical changes of aggregative states were the principal factors to the performance, along with the chemical slight changes. The glossiness dropped significantly in ageing test, which could be used as one of the effective evaluation parameters for ageing conditions in the field.展开更多
In the present work,the effect of process parameters on joining of AZ91 Mg alloy and Al6063 aluminum alloy sheets during friction stir welding(FSP)was studied.A successful joint was achieved at 1100 r.p.m.tool rotatio...In the present work,the effect of process parameters on joining of AZ91 Mg alloy and Al6063 aluminum alloy sheets during friction stir welding(FSP)was studied.A successful joint was achieved at 1100 r.p.m.tool rotational speed and 25 mm/min tool travel speed.Combination of tool rotational speed and tool travel speed has observed a profound effect on the material flow mechanisms at the nugget zone.From the microstructural studies,the joint formation was observed as mainly due to mechanical mixing of the materials.The level of metallurgical continuity at the nugget zone was observed as poor and a sharp interface at the joint was noticed.The microhardness measurements across the weld joint also revealed the lack of establishment of a perfect metallurgical bonding.X-ray diffraction analysis of weld zone showed presence of both magnesium and aluminum.Hence from the preliminary observations,it can be understood that the joining of AZ91 Mg alloy and Al6063 alloy can be achieved by FSP;however,complex issues in material mixing still need further investigations.展开更多
In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er...In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er on the microstructure and mechanical properties of the welded joints was analyzed by optical microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, hardness testing, and tensile mechanical properties testing. Systematic analyses indicate that the addition of trace amounts of Er and Zr leads to the formation of fine Al3Er, Al3Zr, and Al3(Zr,Er) phases that favor significant grain refinement in the weld zone. Besides, the tensile strength and hardness of the welded joints were obviously improved with the addition of Er and Zr, as evidenced by the increase in tensile strength and elongation by 40 MPa and 1.4%, respectively, and by the welding coefficient of 73%.展开更多
The welding joints of Zircaloy 4 plates obtained by diffusion welding at 800°C under pressure in vacuum were cracked during autoclave tests at 400°C superheated steam after exposure longer than 150 days. T...The welding joints of Zircaloy 4 plates obtained by diffusion welding at 800°C under pressure in vacuum were cracked during autoclave tests at 400°C superheated steam after exposure longer than 150 days. The section of specimens was examined by optical microscopy and the composition at the tips of cracking was analyzed by electron microprobe. The result shows that the combination of oxidation and hydriding induced cracking is responsible for this failure of the welding joints.展开更多
This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper...This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.展开更多
The microstructure of butt welding joint of supper eutectic ZA alloy in TIG welding was analyzed through optical microscope and transmission electronic microscope. The results show that the weld seam microstructure is...The microstructure of butt welding joint of supper eutectic ZA alloy in TIG welding was analyzed through optical microscope and transmission electronic microscope. The results show that the weld seam microstructure is fine and mainly composed of columnar crystals and minor equiaxed crystals, the microstructure in the zone near the weld seam is coarse columnar crystals, and the grain in heat affected zone does not grow markedly. The joint microstructure at room temperature is consisted of β phase (rich Al), η Zn, ε phase (CuZn compound), Al 4Cu 9 and other compounds. The hardness of the weld bond area and the tensile strength of the joint are a little higher than that of base materials. The specific elongation of the weld and bond area is a little lower than those of base materials. [展开更多
The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir we...The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir welding(FSW),and the microstructure and mechanical property of the joint were systemically characterized.The microstructure in horizontal direction of the Al and steel near interface was similar to their corresponding conventional friction stir welded joint.The joint was divided into stir zone of Al(ST-Al),stir zone of interface(ST-I),thermal-mechanically affected zone of steel(TMAZ-Fe)and base material of steel(BM-Fe)according to their distinct microstructure vertically.Three kinds of intermetallic compounds(IMCs)of FeAl_(3),FeAl and Fe_(3)Al were formed at the interface.The horizontal micro hardness distribution exhibited a hat shape and“M”shape in Al and steel,respectively.The hardest region of the joint was located at the ST-I,with a hardness of 175 HV−210 HV.The joint was fractured along the hook structure,with an average shear strength of 73.9 MPa.Fractural morphology of Al and steel indicted a cleavage fracture mode.展开更多
The influence of expansion joints on the welding residual stress at the tube-plate junction of an exhaust gas recirculation(EGR)cooler was studied by numerical simulation method.The simulation results show that the ex...The influence of expansion joints on the welding residual stress at the tube-plate junction of an exhaust gas recirculation(EGR)cooler was studied by numerical simulation method.The simulation results show that the expansion joints set on the housing of the EGR cooler mainly for the sake of protecting the tube-plate joints from bearing additional heating stress can also reduce the welding residual tensile stress.The expansion joints set on the EGR cooler can mitigate the tensile force acting on the edges of the main plates through its elastic extension,and thus reduce the magnitude of welding residual tensile stress at the tube-plate junction.展开更多
In this study, the effects of portable pneumatic needle-peening (PPP) on the bending fatigue limit of a low-carbon steel SM490A welded joint containing a semi-circular slit on the weld toe were investigated. PPP was a...In this study, the effects of portable pneumatic needle-peening (PPP) on the bending fatigue limit of a low-carbon steel SM490A welded joint containing a semi-circular slit on the weld toe were investigated. PPP was applied to the specimens with a semi-circular slit with depths of a = 0.4, 0.8, 1.2, and 1.6 mm. Then, three-point bending fatigue tests were carried out under R = 0.05. The fatigue limits of low-carbon steel welded specimens containing a semi-circular slit were increased for peened specimens compared with non-peened specimens. Peened specimens having a semicircular slit with a depth of a = 1.2 mm had high fatigue limits, almost equal to those of the non-slit peened specimens. It was concluded that a semi-circular slit with a depth of less than a = 1.2 mm can be rendered harmless by peening. Then, the fatigue improvement by peening was predicted. The fatigue limits before and after peening could be estimated accurately by using a modified Goodman diagram considering the effects of residual stress, stress concentration, and Vickers hardness. Moreover, the maximum depth of a semi-circular slit that can be rendered harmless by PPP was estimated based on fracture mechanics assuming that the semi-circular slit was equivalent to a semi-circular crack. The prediction results were almost consistent with the experimental results.展开更多
This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argu...This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argument for the optimal parameter combination is presented.Electron-beam welding technology offers several advantages,including high energy density and the ability to create fine weld seams.However,it also presents certain challenges,such as the complexity of welding parameters and the potential generation of brittle phases.The analysis conducted in this paper holds significant importance in enhancing the quality and efficiency of dissimilar material welding processes.展开更多
The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,t...The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,three calculation methods for the temperature field are given.First,the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement.Second,the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment.Third,Matlab software is used to calculate the temperature of the non-measured part.Finally,the temperature distribution function along the rail axis is fitted through the temperature measurement data.The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production.展开更多
This paper reports research into the microstructures and properties of electron beam welding (EBW) joints of a Ti alloy sheet. To control the TC4 sheet joint formation during electron beam welding is not an easy tas...This paper reports research into the microstructures and properties of electron beam welding (EBW) joints of a Ti alloy sheet. To control the TC4 sheet joint formation during electron beam welding is not an easy task. However, the electron beam current has a significant influence on joint formation and a good appearance of a T-joint can be obtained by increasing the heat input and using the electron beam scan method. It was found that all acicular martensite in the fusion zone (FZ) consisted primarily of α' phase titanium, with some β phase present. Grain coarsening occurred in the heat-affected zone (HAZ) due to transformation of the β phase. Butt joints possessed high strength, hardness of the fusion zone, and the heataffected zone of these joints performed better than that of the parent metal. The highest shear strength of T-joint was 615 MPa and the fracture mechanism was a gliding fracture.展开更多
The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two disti...The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two distinct scarf angles(75°and 60°) was considered in this study.The various aspects of welding were compared with contemporary simple square butt(SSB) joint configuration.Welding was carried out at a constant tool rotation speed(TRS),tool traverse speed(TTS) and tool tilt angle of 1100 rpm,2 mm/s and2°,respectively.The results are analyzed in terms of force and torque distribution,microstructure,macrostructure,and mechanical property perspective for different joint configurations.The study reveals the minimum amount of force and torque at 60°scarf angle joint configuration compared to that of square butt joint configuration.Macro study shows that all the joints were defect-free,and a prominent onion ring was present in the lower portion of the weld nugget(WN).Fine equiaxed grains with a minimum average grain size diameter of 6.82 μm were obtained in the WN of scarf joint configuration(SJC).The maximum ultimate tensile strength(UTS) and maximum average NZ hardness of 267 MPa and83.82 HV0.1were obtained in SJC3 at a scarf angle of 60°.It has been observed from the investigation that the joint efficiency increases from 72.5%(SSB) to 86%(SJC3) at a 60° scarf angle.This unique characteristic may lay an impetus on probable joint strength enhancement technique without increasing the production cost.展开更多
基金Project (2009ZM0264) supported by the Fundamental Research Funds for the Central Universities,China
文摘The dissimilar friction stir welding of pure copper/1350 aluminum alloy sheet with a thickness of 3 mm was investigated. Most of the rotating pin was inserted into the aluminum alloy side through a pin-off technique, and sound welds were obtained at a rotation speed of 1000 r/min and a welding speed of 80 mm/min. Complicated microstructure was formed in the nugget, in which vortex-like pattern and lamella structure could be found. No intermetallic compounds were found in the nugget. The hardness distribution indicates that the hardness at the copper side of the nugget is higher than that at the aluminum alloy side, and the hardness at the bottom of the nugget is generally higher than that in other regions. The ultimate tensile strength and elongation of the dissimilar welds are 152 MPa and 6.3%, respectively. The fracture surface observation shows that the dissimilar joints fail with a ductile-brittle mixed fracture mode durin~ tensile test.
文摘Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.
基金Project(51405398) supported by the National Natural Science Foundation of China
文摘Laser-metal inert-gas(MIG)hybrid welding-brazing was applied to the butt joint of 6061-T6 aluminum alloy and 304 stainless steel.The microstructure and mechanical properties of the joint were studied.An excellent joint-section shape was achieved from good wettability on both sides of the stainless steel.Scanning electron microscopy,energy-dispersive spectroscopy and X-ray diffractometry indicated an intermetallic compound(IMC)layer at the 6061-T6/304 interface.The IMC thickness was controlled to be^2μm,which was attributed to the advantage of the laser-MIG hybrid method.Fe3Al dominated in the IMC layer at the interface between the stainless steel and the back reinforcement.The IMC layer in the remaining regions consisted mainly of Fe4Al13.A thinner IMC layer and better wettability on both sides of the stainless steel were obtained,because of the optimized energy distribution from a combination of a laser beam with a MIG arc.The average tensile strength of the joint with reinforcement using laser-MIG hybrid process was improved to be 174 MPa(60%of the 6061-T6 tensile strength),which was significantly higher than that of the joint by traditional MIG process.
基金supported by the National Natural Science Foundation of China (No.51874179,52005240 and 52164045)the Young Talent Program of Major Disciplines of Academic and Technical Leaders in Jiangxi Province (No.20212BCJ23028)。
文摘Friction stir welding of dissimilar Al/Mg thick plates still faces severe challenges, such as poor formability, formation of thick intermetallic compounds, and low joint strength. In this work, two joint configurations, namely inclined butt(conventional butt) and serrated interlocking(innovative butt), are proposed for improving weld formation and joint quality. The results show that a continuous and straight intermetallic compound layer appears at the Mg side interface in conventional butt joint, and the maximum average thickness reaches about 60.1 μm.Additionally, the Mg side interface also partially melts, forming a eutectic structure composed of Mg solid solution and Al_(12)Mg_(17) phase.For the innovative butt joint, the Mg side interface presents the curved interlocking feature, and intermetallic compounds can be reduced to less than 10 μm. The joint strength of innovative butt joint is more than three times that of conventional butt joint. This is due to the interlocking effect and thin intermetallic compounds in the innovative joint.
基金Universiti Kebangsaan Malaysia for supporting this research project through the research funding (AP-2015-016)
文摘Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17(γ) and Al3Mg2(β) at the welding zone with a thickness(< 3.5 μm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint.
文摘The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by means of resistance spot welding (RSW) and ultrasonic assistance welding (UAW). The joining mechanism of lap joint was analyzed by OM, TEM on microstructure at the interface of lap joints and XPS and IR spectra was discussed based on the following different ones: mechanical-interlocking, diffusion bond and coordination bond. The results showed that it was the combined action that played an important role in the effective joining work. Besides, ultrasonic assistance was used in the study to aid welding process based on its high-frequency ultrasonic vibration, which made joints shaping better and improved tensile strength visibly contrast to joints with the same lower heat input parameters.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK20131261)
文摘Cold metal transfer (CMT) welding of nickel-coated Q235 steel studs with 606l Al alloy was carried out using ER4043 as filler metal. The welding process was stable, and appearance of weld formed well without surface defect under the parameters of welding current 121 A, welding voltage 15.4 V and welding speed 6 r/min. The microstructure of fiUer metal was analyzed by means of scanning electron microscopy. The filler metal and 6061 Al alloy were fused to form fusion welding interface, the fusion zone had a good bonding without any micro defect. The steel stud did not melt and brazing interface was formed between the filler metal and steel stud. Two different reaction layers existed in the brazing interface, the Fe2Al5 layer about 10 -12 p^m formed near the steel stud side, and the other layer was mainly composed of FeAl3. Nickel-rich zone was formed in the root toe area of the fillet weld, which was mainly composed of Al3Ni2. The tensile tests showed that the maximum shearing strength of the joints was 129 MPa. The joint was brittle fractured in the intermetallic compound layer where plenty of FeAl3 were distributed continuously.
基金Funded by National Natural Science Foundation of China(Nos.51578545,51378499 and 51708557)Technological Research and Development Programs of China Railways Corporation(Nos.2008G031-N,2013G008-A-3)Technological Research and Development Programs of China Academy of Railways Sciences(Nos.2012YJ025,2016YJ047)
文摘Expansion joints silicone sealants used in high speed railway construction suffer from ultraviolet radiation(UV), high temperature combined with the alkaline environment. To evaluate the durability and analyse the ageing mechanism, six one-component silicone sealants from different companies were selected and subjected to accelerated ageing tests including UV, thermal and alkali ageing treatments. The ageing effects on the performance of the sealants were evaluated via the appearance and the mechanical property changes. The changes in molecular structure were studied by means of Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC) and thermogravimetry(TG). This study revealed that different materials displayed different sensibilities to the ageing methods, in which 15 %-20 % decreases of mechanical properties could be observed under UV radiation test, owning the most significant effects. Structure analysis showed that the physical changes of aggregative states were the principal factors to the performance, along with the chemical slight changes. The glossiness dropped significantly in ageing test, which could be used as one of the effective evaluation parameters for ageing conditions in the field.
文摘In the present work,the effect of process parameters on joining of AZ91 Mg alloy and Al6063 aluminum alloy sheets during friction stir welding(FSP)was studied.A successful joint was achieved at 1100 r.p.m.tool rotational speed and 25 mm/min tool travel speed.Combination of tool rotational speed and tool travel speed has observed a profound effect on the material flow mechanisms at the nugget zone.From the microstructural studies,the joint formation was observed as mainly due to mechanical mixing of the materials.The level of metallurgical continuity at the nugget zone was observed as poor and a sharp interface at the joint was noticed.The microhardness measurements across the weld joint also revealed the lack of establishment of a perfect metallurgical bonding.X-ray diffraction analysis of weld zone showed presence of both magnesium and aluminum.Hence from the preliminary observations,it can be understood that the joining of AZ91 Mg alloy and Al6063 alloy can be achieved by FSP;however,complex issues in material mixing still need further investigations.
文摘In this study, 7A52 aluminum alloy sheets of 4 mm in thickness were welded by tungsten inert gas welding using microalloying welding wires containing traces of Zr and Er. The influence of rare earth elements Zr and Er on the microstructure and mechanical properties of the welded joints was analyzed by optical microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, hardness testing, and tensile mechanical properties testing. Systematic analyses indicate that the addition of trace amounts of Er and Zr leads to the formation of fine Al3Er, Al3Zr, and Al3(Zr,Er) phases that favor significant grain refinement in the weld zone. Besides, the tensile strength and hardness of the welded joints were obviously improved with the addition of Er and Zr, as evidenced by the increase in tensile strength and elongation by 40 MPa and 1.4%, respectively, and by the welding coefficient of 73%.
文摘The welding joints of Zircaloy 4 plates obtained by diffusion welding at 800°C under pressure in vacuum were cracked during autoclave tests at 400°C superheated steam after exposure longer than 150 days. The section of specimens was examined by optical microscopy and the composition at the tips of cracking was analyzed by electron microprobe. The result shows that the combination of oxidation and hydriding induced cracking is responsible for this failure of the welding joints.
文摘This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.
文摘The microstructure of butt welding joint of supper eutectic ZA alloy in TIG welding was analyzed through optical microscope and transmission electronic microscope. The results show that the weld seam microstructure is fine and mainly composed of columnar crystals and minor equiaxed crystals, the microstructure in the zone near the weld seam is coarse columnar crystals, and the grain in heat affected zone does not grow markedly. The joint microstructure at room temperature is consisted of β phase (rich Al), η Zn, ε phase (CuZn compound), Al 4Cu 9 and other compounds. The hardness of the weld bond area and the tensile strength of the joint are a little higher than that of base materials. The specific elongation of the weld and bond area is a little lower than those of base materials. [
文摘The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir welding(FSW),and the microstructure and mechanical property of the joint were systemically characterized.The microstructure in horizontal direction of the Al and steel near interface was similar to their corresponding conventional friction stir welded joint.The joint was divided into stir zone of Al(ST-Al),stir zone of interface(ST-I),thermal-mechanically affected zone of steel(TMAZ-Fe)and base material of steel(BM-Fe)according to their distinct microstructure vertically.Three kinds of intermetallic compounds(IMCs)of FeAl_(3),FeAl and Fe_(3)Al were formed at the interface.The horizontal micro hardness distribution exhibited a hat shape and“M”shape in Al and steel,respectively.The hardest region of the joint was located at the ST-I,with a hardness of 175 HV−210 HV.The joint was fractured along the hook structure,with an average shear strength of 73.9 MPa.Fractural morphology of Al and steel indicted a cleavage fracture mode.
基金This work was supported by the Guangdong Innovative and Entrepreneurial Research Team Program(No.2016ZT06G025)Guangdong Natural Science Foundation(NO: 2017B030306014).
文摘The influence of expansion joints on the welding residual stress at the tube-plate junction of an exhaust gas recirculation(EGR)cooler was studied by numerical simulation method.The simulation results show that the expansion joints set on the housing of the EGR cooler mainly for the sake of protecting the tube-plate joints from bearing additional heating stress can also reduce the welding residual tensile stress.The expansion joints set on the EGR cooler can mitigate the tensile force acting on the edges of the main plates through its elastic extension,and thus reduce the magnitude of welding residual tensile stress at the tube-plate junction.
文摘In this study, the effects of portable pneumatic needle-peening (PPP) on the bending fatigue limit of a low-carbon steel SM490A welded joint containing a semi-circular slit on the weld toe were investigated. PPP was applied to the specimens with a semi-circular slit with depths of a = 0.4, 0.8, 1.2, and 1.6 mm. Then, three-point bending fatigue tests were carried out under R = 0.05. The fatigue limits of low-carbon steel welded specimens containing a semi-circular slit were increased for peened specimens compared with non-peened specimens. Peened specimens having a semicircular slit with a depth of a = 1.2 mm had high fatigue limits, almost equal to those of the non-slit peened specimens. It was concluded that a semi-circular slit with a depth of less than a = 1.2 mm can be rendered harmless by peening. Then, the fatigue improvement by peening was predicted. The fatigue limits before and after peening could be estimated accurately by using a modified Goodman diagram considering the effects of residual stress, stress concentration, and Vickers hardness. Moreover, the maximum depth of a semi-circular slit that can be rendered harmless by PPP was estimated based on fracture mechanics assuming that the semi-circular slit was equivalent to a semi-circular crack. The prediction results were almost consistent with the experimental results.
文摘This paper provides an in-depth discussion of the joint strength of electron beam welding of dissimilar materials.The effect of welding parameters and material properties on the joint strength was analyzed,and an argument for the optimal parameter combination is presented.Electron-beam welding technology offers several advantages,including high energy density and the ability to create fine weld seams.However,it also presents certain challenges,such as the complexity of welding parameters and the potential generation of brittle phases.The analysis conducted in this paper holds significant importance in enhancing the quality and efficiency of dissimilar material welding processes.
基金supported by the China National Railway Group Corporation Science and Technology Research and Development Program(J2022G009)Dr.Jingjing Li received no grant support.
文摘The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,three calculation methods for the temperature field are given.First,the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement.Second,the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment.Third,Matlab software is used to calculate the temperature of the non-measured part.Finally,the temperature distribution function along the rail axis is fitted through the temperature measurement data.The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production.
基金Supported by National Basic Research Program (2010CB731704) and National Natural Science Foundation of China(No. 51075089).
文摘This paper reports research into the microstructures and properties of electron beam welding (EBW) joints of a Ti alloy sheet. To control the TC4 sheet joint formation during electron beam welding is not an easy task. However, the electron beam current has a significant influence on joint formation and a good appearance of a T-joint can be obtained by increasing the heat input and using the electron beam scan method. It was found that all acicular martensite in the fusion zone (FZ) consisted primarily of α' phase titanium, with some β phase present. Grain coarsening occurred in the heat-affected zone (HAZ) due to transformation of the β phase. Butt joints possessed high strength, hardness of the fusion zone, and the heataffected zone of these joints performed better than that of the parent metal. The highest shear strength of T-joint was 615 MPa and the fracture mechanism was a gliding fracture.
基金the Ministry of Human Resource and Development,Government of India for providing the financial assistantship in the form of fellowship。
文摘The present research introduces a unique concept of scarf joint technique in friction stir welding(FSW) of aluminum alloy AA 6061-T6 plates and an investigation on weld quality.A new joint configuration with two distinct scarf angles(75°and 60°) was considered in this study.The various aspects of welding were compared with contemporary simple square butt(SSB) joint configuration.Welding was carried out at a constant tool rotation speed(TRS),tool traverse speed(TTS) and tool tilt angle of 1100 rpm,2 mm/s and2°,respectively.The results are analyzed in terms of force and torque distribution,microstructure,macrostructure,and mechanical property perspective for different joint configurations.The study reveals the minimum amount of force and torque at 60°scarf angle joint configuration compared to that of square butt joint configuration.Macro study shows that all the joints were defect-free,and a prominent onion ring was present in the lower portion of the weld nugget(WN).Fine equiaxed grains with a minimum average grain size diameter of 6.82 μm were obtained in the WN of scarf joint configuration(SJC).The maximum ultimate tensile strength(UTS) and maximum average NZ hardness of 267 MPa and83.82 HV0.1were obtained in SJC3 at a scarf angle of 60°.It has been observed from the investigation that the joint efficiency increases from 72.5%(SSB) to 86%(SJC3) at a 60° scarf angle.This unique characteristic may lay an impetus on probable joint strength enhancement technique without increasing the production cost.