期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Interfacial characterization of resistance spot welded joint of steel and aluminum alloy 被引量:3
1
作者 张伟华 孙大千 +3 位作者 殷世强 韩立军 邱小明 陈庆雷 《China Welding》 EI CAS 2010年第4期6-10,共5页
The dissimilar material resistance spot welding of galvanized high strength steel and aluminum alloy had been conducted. The welded joint exhibited a thin reaction layer composed of Fe2Al5 and Fe4Al13 phases at steel/... The dissimilar material resistance spot welding of galvanized high strength steel and aluminum alloy had been conducted. The welded joint exhibited a thin reaction layer composed of Fe2Al5 and Fe4Al13 phases at steel/aluminum interface. The welded joint presented a tensile shear load of 3.3 kN with an aluminum alloy nugget diameter of 5.7 mm. The interfacial failure mode was observed for the tensile shear specimen and fracture occurred at reaction layer and aluminum alloy fusion zone beside the interface. The reaction layer with compounds was the main reason for reduction of the welded joint mechanical property. 展开更多
关键词 high strength steel aluminum alloy resistance spot welded joint interfacial characterization
下载PDF
Microstructure and mechanical property of resistance spot welded joint of aluminum alloy to high strength steel with especial electrodes 被引量:2
2
作者 张伟华 孙大千 +3 位作者 殷世强 韩立军 高阳 邱小明 《China Welding》 EI CAS 2011年第2期1-6,共6页
Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface a... Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget. 展开更多
关键词 aluminum alloy high strength steel resistance spot welded joint microstructure mechanical property
下载PDF
Analysis of the Superconducting Cable Transposition in Low Resistance CICC Joint 被引量:1
3
作者 朱有华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2000年第4期397-404,共8页
In an integrated structure low resistance CICC joint, current is conducted by outer cable strands coming into touch with the conductive Cu sole. So it is an important condition for satisfying joint performance that ea... In an integrated structure low resistance CICC joint, current is conducted by outer cable strands coming into touch with the conductive Cu sole. So it is an important condition for satisfying joint performance that each strand of the cable inside the joint is able to come to the outermost by transposition. This paper presents analysis, calculation and figures for the strand transposition. According to the twist procedures of the superconducting cable, the author computed the actual pitch of each stage cable, consecutively computed the projection of each stage cable on the axis of the cable (z axis) and the corresponding twist angle as the z coordinate changes, which is then drawn by AutoCAD. From the results shown in the figures, the minimal cable length, which enables each strand to transpose almost equally to the outermost of the cable in such a length, call be determined as the optimal joint length. 展开更多
关键词 Analysis of the Superconducting Cable Transposition in Low resistance CICC joint CICC LENGTH
下载PDF
Evolution of Joint Formation in Resistance Microwelding of Crossed Pt-10%Ir and 316 LVM Stainless Steel Wires 被引量:2
4
作者 黄永德 肖林 +1 位作者 Andie PEQUEGNAT ZHOU Yunhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1286-1290,共5页
The surface morphology, cross-sections, and joint break force(JBF) of joints welded under different electrode forces were studied. The defects, such as electrode sticking, notch, and excessive expulsions, were obser... The surface morphology, cross-sections, and joint break force(JBF) of joints welded under different electrode forces were studied. The defects, such as electrode sticking, notch, and excessive expulsions, were observed in the joints. No desirable joints were achieved with the consideration of weld geometries and joint performances. From the cross-sectional morphology, the joint evolution during the RMW of Pt alloy and 316 LVM SS wires was developed, which involved cold collapse and heat promoted set-down of Pt alloy wire, unbalanced heating at interface, molten phase squeezed out, and defect formation. Finally, the defect formation was also discussed. 展开更多
关键词 Pt-10%Ir 316 LVM SS resistance microwelding evolution of joint formation notch defects
下载PDF
CICC Joint Development and Test for the Test Facility
5
作者 武玉 翁佩德 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第1期2629-2631,共3页
The superconducting joint of the NbTi Cable-in -conduit Conductor (CICC) has been developed and tested on the magnet test facility at Institute of Plasma Physics, Chinese Academy of Sciences. The CICC is composed of (... The superconducting joint of the NbTi Cable-in -conduit Conductor (CICC) has been developed and tested on the magnet test facility at Institute of Plasma Physics, Chinese Academy of Sciences. The CICC is composed of (2NbTi+lCu)x3x3x(6+ltube) strands each with 0.85 mm in diameter, which has been developed for a central solenoid model coil. The effective length of the joint is about 500 mm. There have been two common fabrication modes, one of them is to integrate the 2 CICC terminals with the copper substrate via lead-soldering, and the other is to mechanically compress the above two parts into an integrated unit. In the current range from 2 kA to 10 kA the joint resistance changes slightly. Up to now, 11 TF magnets, a central solenoid model coil, a central solenoid prototype coil, and a large PF model coil of PF large coil have been completed via the latter joint in the test facility. 展开更多
关键词 cable-in-conduit conductor superconducting joint joint resistance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部