Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains.Time-domain inversion has stronger stability and noise resistance compared to frequencydo...Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains.Time-domain inversion has stronger stability and noise resistance compared to frequencydomain inversion.Frequency domain inversion has stronger ability to identify small-scale bodies and higher inversion resolution.Therefore,the research on the joint inversion method in the time-frequency domain is of great significance for improving the inversion resolution,stability,and noise resistance.The introduction of prior information constraints can effectively reduce ambiguity in the inversion process.However,the existing modeldriven time-frequency joint inversion assumes a specific prior distribution of the reservoir.These methods do not consider the original features of the data and are difficult to describe the relationship between time-domain features and frequency-domain features.Therefore,this paper proposes a high-resolution seismic inversion method based on joint data-driven in the time-frequency domain.The method is based on the impedance and reflectivity samples from logging,using joint dictionary learning to obtain adaptive feature information of the reservoir,and using sparse coefficients to capture the intrinsic relationship between impedance and reflectivity.The optimization result of the inversion is achieved through the regularization term of the joint dictionary sparse representation.We have finally achieved an inversion method that combines constraints on time-domain features and frequency features.By testing the model data and field data,the method has higher resolution in the inversion results and good noise resistance.展开更多
Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyze...Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context.展开更多
The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and th...The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).展开更多
The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS...The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS) of the rotational motions is calculated and its characteristics are analyzed, then the TFRS is applied to analyze the damage mechanism of one twelve-storey frame concrete structure. The results show that one of the ground motion components can not reflect the characteristics of the seismic motions completely; the characteristics of each component, especially rotational motions, need to be studied. The damage line of the structure and TFRS of ground motion are important for seismic design, only the TFRS of input seismic wave is suitable, the structure design is reliable.展开更多
This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed...This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.展开更多
With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. Howev...With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. However, due to the complexity of SAR imaging mechanism, interpreting targets in SAR images is a tough problem. This paper presents a new aircraft interpretation method based on the joint time-frequency analysis and multi-dimensional contrasting of basic structures. Moreover, SAR data acquisition experiment is designed for interpreting the aircraft. Analyzing the experiment data with our method, the result shows that the proposed method largely makes use of the SAR data information. The reasonable results can provide some auxiliary support for the SAR images manual interpretation.展开更多
A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal o...A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal of gas-liquid two-phase flow was preprocessed,and then the AOK theory was used to analyze the dynamic differ-ential pressure signal.The mechanism of two-phase flow was discussed through the time-frequency spectrum.On the condition of steady water flow rate,with the increasing of gas flow rate,the flow pattern changes from bubbly flow to slug flow,then to plug flow,meanwhile,the energy distribution of signal fluctuations show significant change that energy transfer from 15-35 Hz band to 0-8 Hz band;moreover,when the flow pattern is slug flow,there are two wave peaks showed in the time-frequency spectrum.Finally,a number of characteristic variables were defined by using the time-frequency spectrum and the ridge of AOK.When the characteristic variables were visu-ally analyzed,the relationship between different combination of characteristic variables and flow patterns would be gotten.The results show that,this method can explain the law of flow in different flow patterns.And characteristic variables,defined by this method,can get a clear description of the flow information.This method provides a new way for the flow pattern identification,and the percentage of correct prediction is up to 91.11%.展开更多
Slodkowski joint spectrum is similar to Taylor joint spectrum, but it has more important meaning in theory and application. In this paper we characterize Slodkowski joint spectrum and generalize some results about ten...Slodkowski joint spectrum is similar to Taylor joint spectrum, but it has more important meaning in theory and application. In this paper we characterize Slodkowski joint spectrum and generalize some results about tensor product.展开更多
The quality factor(or Q value)is an important parameter for characterizing the inelastic properties of rock.Achieving a Q value estimation with high accuracy and stability is still challenging.In this study,a new meth...The quality factor(or Q value)is an important parameter for characterizing the inelastic properties of rock.Achieving a Q value estimation with high accuracy and stability is still challenging.In this study,a new method for estimating ultrasonic attenuation using a spectral ratio based on an S transform(SR-ST)is presented to improve the stability and accuracy of Q estimation.The variable window of ST is used to solve the time window problem.We add two window factors to the Gaussian window function in the ST.The window factors can adjust the scale of the Gaussian window function to the ultrasonic signal,which reduces the calculation error attributed to the conventional Gaussian window function.Meanwhile,the frequency bandwidth selection rules for the linear regression of the amplitude ratio are given to further improve stability and accuracy.First,the feasibility and influencing factors of the SR-ST method are studied through numerical testing and standard sample experiments.Second,artificial samples with different Q values are used to study the adaptability and stability of the SR-ST method.Finally,a further comparison between the new method and the conventional spectral ratio method(SR)is conducted using rock field samples,again addressing stability and accuracy.The experimental results show that this method will yield an error of approximately 36%using the conventional Gaussian window function.This problem can be solved by adding the time window factors to the Gaussian window function.The frequency bandwidth selection rules and mean slope value of the amplitude ratio used in the SR-ST method can ensure that the maximum error of different Q values estimation(Q>15)is less than 10%.展开更多
Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity an...Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity and compression ratio joint adjustment algorithm for compressed spectrum sensing in CR network is investigated, with the hypothesis that the sparsity level is unknown as priori knowledge at CR terminals. As perfect spectrum reconstruction is not necessarily required during spectrum detection process, the proposed algorithm only performs a rough estimate of sparsity level. Meanwhile, in order to further reduce the sensing measurement, different compression ratios for CR terminals with varying Signal-to-Noise Ratio (SNR) are considered. The proposed algorithm, which optimizes the compression ratio as well as the estimated sparsity level, can greatly reduce the sensing measurement without degrading the detection performance. It also requires less steps of iteration for convergence. Corroborating simulation results are presented to testify the effectiveness of the proposed algorithm for collaborative spectrum sensing.展开更多
In this paper,a distributed compressive spectrum sensing scheme in wideband cognitive radio networks is investigated.An analog-to-information converters(AIC) RF front-end sampling structure is proposed which use par...In this paper,a distributed compressive spectrum sensing scheme in wideband cognitive radio networks is investigated.An analog-to-information converters(AIC) RF front-end sampling structure is proposed which use parallel low rate analog to digital conversions(ADCs) and fewer storage units for wideband spectrum signal sampling.The proposed scheme uses multiple low rate congitive radios(CRs) collecting compressed samples through AICs distritbutedly and recover the signal spectrum jointly.A general joint sparsity model is defined in this scenario,along with a universal recovery algorithm based on simultaneous orthogonal matching pursuit(S-OMP).Numerical simulations show this algorithm outperforms current existing algorithms under this model and works competently under other existing models.展开更多
As the rapid development of wireless communication networks has resulted in better user experiences,the spectrum resources occupied and energy consumption have increased considerably and resulted in great costs.To add...As the rapid development of wireless communication networks has resulted in better user experiences,the spectrum resources occupied and energy consumption have increased considerably and resulted in great costs.To address the energy consumption and cost problems of spectrum sharing in cognitive radio networks,a hybrid spectrum sharing model combining the free spectrum of authorized users and the leased spectrum of mobile network operators is given.Based on the hybrid model,a function of throughput and costs,including energy consumption and transaction costs,is constructed,and a joint utility optimization problem is analyzed.The transactions between secondary users and primary users are performed on the consortium blockchain on which users can directly trade spectrum and the transaction information is recorded.In order to improve the joint utility,the Lagrange multiplier method is used to achieve the optimal solution for the sensing time,the number of secondary users involved in sensing,and the transmission power.The simulation results show that the joint utility optimization algorithm proposed in this paper can achieve higher joint utility under the constraints of the minimum throughput requirement and maximum transmission power.展开更多
In this paper we characterize the left joint spectrum of an n-tuple T = (T1,… ,Tn) of dominant bounded linear operators on a complex Hilbert space H and the unital C-algebra C(T) generated by T1, …,Tn and Ⅰ; moreov...In this paper we characterize the left joint spectrum of an n-tuple T = (T1,… ,Tn) of dominant bounded linear operators on a complex Hilbert space H and the unital C-algebra C(T) generated by T1, …,Tn and Ⅰ; moreover, we give an application of this characterization.展开更多
This paper proposes a joint method to simultaneously retrieve wave spectra at dif ferent scales from spaceborne Synthetic Aperture Radar(SAR) and wave spectrometer data. The method combines the output from the two dif...This paper proposes a joint method to simultaneously retrieve wave spectra at dif ferent scales from spaceborne Synthetic Aperture Radar(SAR) and wave spectrometer data. The method combines the output from the two dif ferent sensors to overcome retrieval limitations that occur in some sea states. The wave spectrometer sensitivity coeffi cient is estimated using an ef fective signifi cant wave height(SWH), which is an average of SAR-derived and wave spectrometer-derived SWH. This averaging extends the area of the sea surface sampled by the nadir beam of the wave spectrometer to improve the accuracy of the estimated sensitivity coeffi cient in inhomogeneous sea states. Wave spectra are then retrieved from SAR data using wave spectrometer-derived spectra as fi rst guess spectra to complement the short waves lost in SAR data retrieval. In addition, the problem of 180° ambiguity in retrieved spectra is overcome using SAR imaginary cross spectra. Simulated data were used to validate the joint method. The simulations demonstrated that retrieved wave parameters, including SWH, peak wave length(PWL), and peak wave direction(PWD), agree well with reference parameters. Collocated data from ENVISAT advanced SAR(ASAR), the airborne wave spectrometer STORM, the PHAROS buoy, and the European Centre for Medium-Range Weather Forecasting(ECMWF) were then used to verify the proposed method. Wave parameters retrieved from STORM and two ASAR images were compared to buoy and ECMWF wave data. Most of the retrieved parameters were comparable to reference parameters. The results of this study show that the proposed joint retrieval method could be a valuable complement to traditional methods used to retrieve directional ocean wave spectra, particularly in inhomogeneous sea states.展开更多
Empirical mode decomposition( EMD) is a powerful tool of time-frequency analysis. EMD decomposes a signal into a series of sub-signals,called Intrinsic mode functions( IMFs). Each IMF contains different frequency comp...Empirical mode decomposition( EMD) is a powerful tool of time-frequency analysis. EMD decomposes a signal into a series of sub-signals,called Intrinsic mode functions( IMFs). Each IMF contains different frequency components which can deal with the nonlinear and non-stationary of signal. Complete ensemble empirical mode decomposition( CEEMD) is an improved algorithm,which can provide an accurate reconstruction of the original signal and better spectral separation of the modes. The authors studied the decomposition result of a synthetic signal obtained from EMD and CEEMD. The result shows that the CEEMD has suitability in spectrum decomposition time-frequency analysis. Compared with traditional methods,a higher time-frequency resolution is obtained through verifying the method on both synthetic and real data.展开更多
Joint radar and communication(JRC)technology is gradually becoming an essential approach to alleviating spectral congestion.Radar and communications systems were designed with common spectral and hardware resources to...Joint radar and communication(JRC)technology is gradually becoming an essential approach to alleviating spectral congestion.Radar and communications systems were designed with common spectral and hardware resources to reduce size,improve performance,reduce cost,and decongest the spectrum.Various approaches have been proposed to achieve the coexistence of radar and communication systems.This paper mainly focuses on the research directions of radar communication coexistence(RCC)and dual-function radar communication systems(DFRC)in JRC technology.We summarize and analyze the existing research problems in the JRC era.According to the characteristics and advantages of JRC technology,we highlight several potentials in military and commercial applications.展开更多
In vivo fluorescence has a wide application in analyzing microalgae, including assessing phytoplankton biomass, rates of primary production and physiological status. This study describes a preliminary investigation on...In vivo fluorescence has a wide application in analyzing microalgae, including assessing phytoplankton biomass, rates of primary production and physiological status. This study describes a preliminary investigation on the joint application of the three kinds of fluorescence analysis in the physiological study of microalgae. Flow cytometry and fluorescence spectrometry were used to obtain the in vivo static fluorescence information of pigments, and a Pulsed-Amplitude-Modulation chlorophyll fluorometer was used to detect the dynamic fluorescence of chlorophyll. The validity of the joint application was proved by analyzing two labora- tory cultured Arctic microalgae, Pseudo-nitzschia delicatissima (Bacillariophyceae) and Thalassiosira sp. The higher value of minimum fluorescence yield in dark-adapted state (Fo), actual photochemical efficiency of PSll (ФPSII), and electron transport rate (ETR) exhibited positive results in a higher cell abundance and chlorophyll a content of P. delicatissima; whereas higher fl-carotene content of Thalassiosira sp. played an important role in the protection of photosynthesis.展开更多
Multi-carrier faster-than-Nyquist(MFTN)can improve the spectrum efficiency(SE).In this paper,we first analyze the benefit of time frequency packing MFTN(TFP-MFTN).Then,we propose an efficient digital implementation fo...Multi-carrier faster-than-Nyquist(MFTN)can improve the spectrum efficiency(SE).In this paper,we first analyze the benefit of time frequency packing MFTN(TFP-MFTN).Then,we propose an efficient digital implementation for TFP-MFTN based on filter bank multicarrier modulation.The time frequency packing ratio pair in our proposed implementation scheme is optimized with the SE criterion.Next,the joint optimization for the coded modulation MFTN based on extrinsic information transfer(EXIT)chart is performed.The Monte-Carlo simulations are carried out to verify performance gain of the joint inner and outer code optimization.Simulation results demonstrate that the TFPMFTN has a 0.8 dB and 0.9 dB gain comparing to time packing MFTN(TP-MFTN)and higher order Nyquist at same SE,respectively;the TFP-MFTN with optimized low density parity check(LDPC)code has a 2.9 dB gain comparing to that with digital video broadcasting(DVB)LDPC.Compared with previous work on TFP-MFTN(SE=1.55 bit/s/Hz),the SE of our work is improved by 29%and our work has a 4.1 dB gain at BER=1×10^(-5).展开更多
In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)in...In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)into two dimensions,the fractional time-frequency spectrum feature of an image can be obtained.In the achievement process,we search for the optimal order and design the optimal window function to accomplish the two-dimensional optimal FrGT.Finally,the energy attenuation gradient(EAG)feature of the optimal time-frequency spectrum is extracted for high-frequency detection.The simulation results show the proposed algorithm has a good performance in SAR target detection and lays the foundation for recognition.展开更多
In this paper we have accomplished one of the tasks of cognitive radio i.e. dynamic spectrum sensing by using wavelet based Synchrosqueezing transform [1], a novel technique, which was proposed to analyze a signal in ...In this paper we have accomplished one of the tasks of cognitive radio i.e. dynamic spectrum sensing by using wavelet based Synchrosqueezing transform [1], a novel technique, which was proposed to analyze a signal in time-frequency plane. The distinctive feature of this transform compared to other techniques is that it enables us to decompose amplitude and frequency modulated signals and allows individual reconstruction of these components. The objective is also to separate the occupied band into amplitude modulated and frequency modulated bands.展开更多
文摘Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains.Time-domain inversion has stronger stability and noise resistance compared to frequencydomain inversion.Frequency domain inversion has stronger ability to identify small-scale bodies and higher inversion resolution.Therefore,the research on the joint inversion method in the time-frequency domain is of great significance for improving the inversion resolution,stability,and noise resistance.The introduction of prior information constraints can effectively reduce ambiguity in the inversion process.However,the existing modeldriven time-frequency joint inversion assumes a specific prior distribution of the reservoir.These methods do not consider the original features of the data and are difficult to describe the relationship between time-domain features and frequency-domain features.Therefore,this paper proposes a high-resolution seismic inversion method based on joint data-driven in the time-frequency domain.The method is based on the impedance and reflectivity samples from logging,using joint dictionary learning to obtain adaptive feature information of the reservoir,and using sparse coefficients to capture the intrinsic relationship between impedance and reflectivity.The optimization result of the inversion is achieved through the regularization term of the joint dictionary sparse representation.We have finally achieved an inversion method that combines constraints on time-domain features and frequency features.By testing the model data and field data,the method has higher resolution in the inversion results and good noise resistance.
基金The National Natural Science Foundation of China(No.61301295,61273266,61301219,61201326,61003131)the Natural Science Foundation of Anhui Province(No.1308085QF100,1408085MF113)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20130241)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.12KJB510021)the Doctoral Fund of Anhui University
文摘Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context.
基金financially supported by the National 973 Project(No.2014CB239006)the National Natural Science Foundation of China(No.41104069 and 41274124)the Fundamental Research Funds for Central Universities(No.R1401005A)
文摘The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).
基金funded by the National Natural Science Foundation of China under grant No.50578125
文摘The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS) of the rotational motions is calculated and its characteristics are analyzed, then the TFRS is applied to analyze the damage mechanism of one twelve-storey frame concrete structure. The results show that one of the ground motion components can not reflect the characteristics of the seismic motions completely; the characteristics of each component, especially rotational motions, need to be studied. The damage line of the structure and TFRS of ground motion are important for seismic design, only the TFRS of input seismic wave is suitable, the structure design is reliable.
基金supported by the National Natural Science Foundation of China(Grant No.61973037 and No.61673066).
文摘This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.
文摘With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. However, due to the complexity of SAR imaging mechanism, interpreting targets in SAR images is a tough problem. This paper presents a new aircraft interpretation method based on the joint time-frequency analysis and multi-dimensional contrasting of basic structures. Moreover, SAR data acquisition experiment is designed for interpreting the aircraft. Analyzing the experiment data with our method, the result shows that the proposed method largely makes use of the SAR data information. The reasonable results can provide some auxiliary support for the SAR images manual interpretation.
基金Supported by the Natural Science Foundation of Zhejiang Province(Y1100842) the Planning Projects of General Administration of Quality Supervision Inspection and Quarantine of the People's Republic of China(2006QK23)
文摘A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal of gas-liquid two-phase flow was preprocessed,and then the AOK theory was used to analyze the dynamic differ-ential pressure signal.The mechanism of two-phase flow was discussed through the time-frequency spectrum.On the condition of steady water flow rate,with the increasing of gas flow rate,the flow pattern changes from bubbly flow to slug flow,then to plug flow,meanwhile,the energy distribution of signal fluctuations show significant change that energy transfer from 15-35 Hz band to 0-8 Hz band;moreover,when the flow pattern is slug flow,there are two wave peaks showed in the time-frequency spectrum.Finally,a number of characteristic variables were defined by using the time-frequency spectrum and the ridge of AOK.When the characteristic variables were visu-ally analyzed,the relationship between different combination of characteristic variables and flow patterns would be gotten.The results show that,this method can explain the law of flow in different flow patterns.And characteristic variables,defined by this method,can get a clear description of the flow information.This method provides a new way for the flow pattern identification,and the percentage of correct prediction is up to 91.11%.
文摘Slodkowski joint spectrum is similar to Taylor joint spectrum, but it has more important meaning in theory and application. In this paper we characterize Slodkowski joint spectrum and generalize some results about tensor product.
基金supported by the Special Fund of the Institute of Geophysics,China Earthquake Administration(Nos.DQJB19B02 and DQJB17T04)
文摘The quality factor(or Q value)is an important parameter for characterizing the inelastic properties of rock.Achieving a Q value estimation with high accuracy and stability is still challenging.In this study,a new method for estimating ultrasonic attenuation using a spectral ratio based on an S transform(SR-ST)is presented to improve the stability and accuracy of Q estimation.The variable window of ST is used to solve the time window problem.We add two window factors to the Gaussian window function in the ST.The window factors can adjust the scale of the Gaussian window function to the ultrasonic signal,which reduces the calculation error attributed to the conventional Gaussian window function.Meanwhile,the frequency bandwidth selection rules for the linear regression of the amplitude ratio are given to further improve stability and accuracy.First,the feasibility and influencing factors of the SR-ST method are studied through numerical testing and standard sample experiments.Second,artificial samples with different Q values are used to study the adaptability and stability of the SR-ST method.Finally,a further comparison between the new method and the conventional spectral ratio method(SR)is conducted using rock field samples,again addressing stability and accuracy.The experimental results show that this method will yield an error of approximately 36%using the conventional Gaussian window function.This problem can be solved by adding the time window factors to the Gaussian window function.The frequency bandwidth selection rules and mean slope value of the amplitude ratio used in the SR-ST method can ensure that the maximum error of different Q values estimation(Q>15)is less than 10%.
基金Supported by the National Natural Science Foundation of China (No. 61102066)China Postdoctoral Science Foundation (No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No.Y201119890)
文摘Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity and compression ratio joint adjustment algorithm for compressed spectrum sensing in CR network is investigated, with the hypothesis that the sparsity level is unknown as priori knowledge at CR terminals. As perfect spectrum reconstruction is not necessarily required during spectrum detection process, the proposed algorithm only performs a rough estimate of sparsity level. Meanwhile, in order to further reduce the sensing measurement, different compression ratios for CR terminals with varying Signal-to-Noise Ratio (SNR) are considered. The proposed algorithm, which optimizes the compression ratio as well as the estimated sparsity level, can greatly reduce the sensing measurement without degrading the detection performance. It also requires less steps of iteration for convergence. Corroborating simulation results are presented to testify the effectiveness of the proposed algorithm for collaborative spectrum sensing.
基金Project supported by the National Fundamental Research (Grant Nos.2009CB3020402,2010CB731803)the National Natural Science Foundation of China (Grant Nos.60702046,60832005,60972050,60632040)the Natural High-Technology Research and Development Program of China (Grant Nos.2007AA01Z267,2009AA01Z248,2009AA011802)
文摘In this paper,a distributed compressive spectrum sensing scheme in wideband cognitive radio networks is investigated.An analog-to-information converters(AIC) RF front-end sampling structure is proposed which use parallel low rate analog to digital conversions(ADCs) and fewer storage units for wideband spectrum signal sampling.The proposed scheme uses multiple low rate congitive radios(CRs) collecting compressed samples through AICs distritbutedly and recover the signal spectrum jointly.A general joint sparsity model is defined in this scenario,along with a universal recovery algorithm based on simultaneous orthogonal matching pursuit(S-OMP).Numerical simulations show this algorithm outperforms current existing algorithms under this model and works competently under other existing models.
基金Supported by the National Natural Science Foundation of China(No.62071002)。
文摘As the rapid development of wireless communication networks has resulted in better user experiences,the spectrum resources occupied and energy consumption have increased considerably and resulted in great costs.To address the energy consumption and cost problems of spectrum sharing in cognitive radio networks,a hybrid spectrum sharing model combining the free spectrum of authorized users and the leased spectrum of mobile network operators is given.Based on the hybrid model,a function of throughput and costs,including energy consumption and transaction costs,is constructed,and a joint utility optimization problem is analyzed.The transactions between secondary users and primary users are performed on the consortium blockchain on which users can directly trade spectrum and the transaction information is recorded.In order to improve the joint utility,the Lagrange multiplier method is used to achieve the optimal solution for the sensing time,the number of secondary users involved in sensing,and the transmission power.The simulation results show that the joint utility optimization algorithm proposed in this paper can achieve higher joint utility under the constraints of the minimum throughput requirement and maximum transmission power.
文摘In this paper we characterize the left joint spectrum of an n-tuple T = (T1,… ,Tn) of dominant bounded linear operators on a complex Hilbert space H and the unital C-algebra C(T) generated by T1, …,Tn and Ⅰ; moreover, we give an application of this characterization.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Science Foundation for Young Scientists of China(Nos.41306191,41306192,41321004,41406203)the Scientific Research Fund of the Second Institute of Oceanography,State Oceanic Administration of China(No.JG1317)
文摘This paper proposes a joint method to simultaneously retrieve wave spectra at dif ferent scales from spaceborne Synthetic Aperture Radar(SAR) and wave spectrometer data. The method combines the output from the two dif ferent sensors to overcome retrieval limitations that occur in some sea states. The wave spectrometer sensitivity coeffi cient is estimated using an ef fective signifi cant wave height(SWH), which is an average of SAR-derived and wave spectrometer-derived SWH. This averaging extends the area of the sea surface sampled by the nadir beam of the wave spectrometer to improve the accuracy of the estimated sensitivity coeffi cient in inhomogeneous sea states. Wave spectra are then retrieved from SAR data using wave spectrometer-derived spectra as fi rst guess spectra to complement the short waves lost in SAR data retrieval. In addition, the problem of 180° ambiguity in retrieved spectra is overcome using SAR imaginary cross spectra. Simulated data were used to validate the joint method. The simulations demonstrated that retrieved wave parameters, including SWH, peak wave length(PWL), and peak wave direction(PWD), agree well with reference parameters. Collocated data from ENVISAT advanced SAR(ASAR), the airborne wave spectrometer STORM, the PHAROS buoy, and the European Centre for Medium-Range Weather Forecasting(ECMWF) were then used to verify the proposed method. Wave parameters retrieved from STORM and two ASAR images were compared to buoy and ECMWF wave data. Most of the retrieved parameters were comparable to reference parameters. The results of this study show that the proposed joint retrieval method could be a valuable complement to traditional methods used to retrieve directional ocean wave spectra, particularly in inhomogeneous sea states.
文摘Empirical mode decomposition( EMD) is a powerful tool of time-frequency analysis. EMD decomposes a signal into a series of sub-signals,called Intrinsic mode functions( IMFs). Each IMF contains different frequency components which can deal with the nonlinear and non-stationary of signal. Complete ensemble empirical mode decomposition( CEEMD) is an improved algorithm,which can provide an accurate reconstruction of the original signal and better spectral separation of the modes. The authors studied the decomposition result of a synthetic signal obtained from EMD and CEEMD. The result shows that the CEEMD has suitability in spectrum decomposition time-frequency analysis. Compared with traditional methods,a higher time-frequency resolution is obtained through verifying the method on both synthetic and real data.
文摘Joint radar and communication(JRC)technology is gradually becoming an essential approach to alleviating spectral congestion.Radar and communications systems were designed with common spectral and hardware resources to reduce size,improve performance,reduce cost,and decongest the spectrum.Various approaches have been proposed to achieve the coexistence of radar and communication systems.This paper mainly focuses on the research directions of radar communication coexistence(RCC)and dual-function radar communication systems(DFRC)in JRC technology.We summarize and analyze the existing research problems in the JRC era.According to the characteristics and advantages of JRC technology,we highlight several potentials in military and commercial applications.
基金financially supported by the National Natural Science Foundation of China (Grant no.41076130)the SOA Youth Marine Science Foundation (Grant no.2010116)the Open Research Foundation of Laboratory of Marine Ecosystem and Biogeochemistry,SOA (Grant no.LMEB200902)
文摘In vivo fluorescence has a wide application in analyzing microalgae, including assessing phytoplankton biomass, rates of primary production and physiological status. This study describes a preliminary investigation on the joint application of the three kinds of fluorescence analysis in the physiological study of microalgae. Flow cytometry and fluorescence spectrometry were used to obtain the in vivo static fluorescence information of pigments, and a Pulsed-Amplitude-Modulation chlorophyll fluorometer was used to detect the dynamic fluorescence of chlorophyll. The validity of the joint application was proved by analyzing two labora- tory cultured Arctic microalgae, Pseudo-nitzschia delicatissima (Bacillariophyceae) and Thalassiosira sp. The higher value of minimum fluorescence yield in dark-adapted state (Fo), actual photochemical efficiency of PSll (ФPSII), and electron transport rate (ETR) exhibited positive results in a higher cell abundance and chlorophyll a content of P. delicatissima; whereas higher fl-carotene content of Thalassiosira sp. played an important role in the protection of photosynthesis.
基金supported by the National Natural Science Foundation of China(61961014,61561017)。
文摘Multi-carrier faster-than-Nyquist(MFTN)can improve the spectrum efficiency(SE).In this paper,we first analyze the benefit of time frequency packing MFTN(TFP-MFTN).Then,we propose an efficient digital implementation for TFP-MFTN based on filter bank multicarrier modulation.The time frequency packing ratio pair in our proposed implementation scheme is optimized with the SE criterion.Next,the joint optimization for the coded modulation MFTN based on extrinsic information transfer(EXIT)chart is performed.The Monte-Carlo simulations are carried out to verify performance gain of the joint inner and outer code optimization.Simulation results demonstrate that the TFPMFTN has a 0.8 dB and 0.9 dB gain comparing to time packing MFTN(TP-MFTN)and higher order Nyquist at same SE,respectively;the TFP-MFTN with optimized low density parity check(LDPC)code has a 2.9 dB gain comparing to that with digital video broadcasting(DVB)LDPC.Compared with previous work on TFP-MFTN(SE=1.55 bit/s/Hz),the SE of our work is improved by 29%and our work has a 4.1 dB gain at BER=1×10^(-5).
基金supported by the Natural Science Foundation of Sichuan Province of China under Grant No.2022NSFSC40574partially supported by the National Natural Science Foundation of China under Grants No.61571096 and No.61775030.
文摘In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)into two dimensions,the fractional time-frequency spectrum feature of an image can be obtained.In the achievement process,we search for the optimal order and design the optimal window function to accomplish the two-dimensional optimal FrGT.Finally,the energy attenuation gradient(EAG)feature of the optimal time-frequency spectrum is extracted for high-frequency detection.The simulation results show the proposed algorithm has a good performance in SAR target detection and lays the foundation for recognition.
文摘In this paper we have accomplished one of the tasks of cognitive radio i.e. dynamic spectrum sensing by using wavelet based Synchrosqueezing transform [1], a novel technique, which was proposed to analyze a signal in time-frequency plane. The distinctive feature of this transform compared to other techniques is that it enables us to decompose amplitude and frequency modulated signals and allows individual reconstruction of these components. The objective is also to separate the occupied band into amplitude modulated and frequency modulated bands.