Rock joints are one of the vital discontinuities in a natural rock mass.How to accurately and conveniently determine joint normal stiffness is therefore significant in rock mechanics.Here,first,seven existing methods ...Rock joints are one of the vital discontinuities in a natural rock mass.How to accurately and conveniently determine joint normal stiffness is therefore significant in rock mechanics.Here,first,seven existing methods for determining joint normal stiffness were introduced and reviewed,among which MethodⅠ(the indirect measurement method),MethodⅡ(the direct determination method),MethodⅢ(the across-joint strain gauge measurement method)and MethodⅣ(the deformation measuring ring method)are via destructive uniaxial compression testing,while MethodⅤ(the best fitting method),MethodⅥ(the rapid evaluation method)and MethodⅦ(the effective modulus method)are through wave propagation principles and nondestructive ultrasonic testing.Subsequently,laboratory tests of intact and jointed sandstone specimens were conducted following the testing requirements and pro-cedures of those seven methods.A comparison among those methods was then performed.The results show that Method I,i.e.the benchmark method,is reliable and stable.MethodⅡhas a conceptual drawback,and its accuracy is acceptable at only very low stress levels.Relative errors in the results from MethodⅢare very large.With MethodⅣ,the testing results are sufficiently accurate despite the strict testing environment and complicated testing procedures.The results from MethodⅤare greatly unstable and significantly dependent on the natural frequency of the transducers.The joint normal stiffness determined with MethodⅥis stable and accurate,although data processing is complex.MethodⅦcould be adopted to determine the joint normal stiffness corresponding to the rock elastic deformation phase only.Consequently,it is suggested that MethodsⅠ,ⅣandⅥshould be adopted for the mea-surement of joint normal stiffness.The findings could be helpful in selecting an appropriate method to determine joint normal stiffness and,hence,to better solve discontinuous rock mass problems.展开更多
Background: Loose bodies (LBs) within the knee joint are commonly encountered during clinical practice and are frequently observed during knee arthroscopy. The primary treatment involves the removal of loose bodies;ho...Background: Loose bodies (LBs) within the knee joint are commonly encountered during clinical practice and are frequently observed during knee arthroscopy. The primary treatment involves the removal of loose bodies;however, their complete eradication is often challenging and may not address underlying diseases, leading to persistent symptoms and the risk of new loose body formation. Aim: This case report aims to present the findings and surgical management of a 52-year-old male with an unusually large osseous loose body in the knee joint and associated pathologies. Case Presentation: The patient, a 52-year-old male, experienced recurrent episodes of severe, sudden, and painful locking of the knee joint, leading to difficulties moving. A plain MRI study was conducted to evaluate the condition of the knee joint, which revealed various degenerative changes and the presence of a loose body. Subsequently, an arthroscopic examination was performed under general anesthesia, uncovering the presence of an abnormally large loose body, as well as other pathologies including chondropathy, meniscal degeneration, and Baker’s cyst. Conclusion: Loose bodies (LBs) in the knee joint pose significant challenges and may lead to debilitating symptoms. Timely diagnosis and appropriate surgical intervention are crucial for symptom relief and the prevention of further joint damage as arthroscopic excision. Comprehensive imaging has a vital role in guiding treatment decisions and optimizing patient outcomes. In this case, the removal of the loose body improved patient outcomes and helped prevent potential joint complications.展开更多
Objective:To investigate the value of liver stiffness measurement(LSM)combined with S index in predicting the degree of liver fibrosis in hepatitis B patients.Methods:A total of 187 chronic hepatitis B patients who we...Objective:To investigate the value of liver stiffness measurement(LSM)combined with S index in predicting the degree of liver fibrosis in hepatitis B patients.Methods:A total of 187 chronic hepatitis B patients who were admitted to the Department of Infection,the First Affiliated Hospital of Hainan Medical College from January 2019 to December 2021 were selected.General data were collected,blood routine,liver function,liver fibrosis and liver stiffness measurement were tested,and S index,APRI and FIB-4 index were calculated,and liver biopsy was performed.Results:According to the pathological results of liver puncture,The patients were divided into no significant fibrosis group(n=86),significant fibrosis group(n=71)and cirrhosis group(n=30).There were significant differences in age,PLT,GGT,ALB,S index,HA,LN and LSM levels among the three groups(P<0.05).There was a good correlation between S index and the degree of hepatic fibrosis(rs=0.738,P<0.001).The AUC of S index and LSM for the diagnosis of significant fibrosis in hepatitis B were 0.873 and 0.792,respectively.And the AUC of S index and LSM for the diagnosis of liver cirrhosis were 0.966 and 0.879,respectively.The AUC for the combined diagnosis of significant fibrosis and cirrhosis were 0.908 and 0.988,respectively.The AUROC of combined detection in the diagnosis of cirrhosis was higher than that of LSM,APRI and FIB-4(P<0.05).Conclusion:LSM combined with S index has certain application value in the diagnosis of liver fibrosis/cirrhosis in hepatitis B patients.展开更多
In this context,we experimentally studied the anisotropic mechanical behaviors of rough-walled plaster joints using a servo-controlled direct shear apparatus under both constant normal load(CNL)and constant normal sti...In this context,we experimentally studied the anisotropic mechanical behaviors of rough-walled plaster joints using a servo-controlled direct shear apparatus under both constant normal load(CNL)and constant normal stiffness(CNS)conditions.The shear-induced variations in the normal displacement,shear stress,normal stress and sheared-off asperity mass are analyzed and correlated with the inclination angle of the critical waviness of joint surfaces.The results show that CNS condition gives rise to a smaller normal displacement due to the larger normal stress during shearing,compared with CNL condition.Under CNL conditions,there is one peak shear stress during shearing,whereas there are no peak shear stress for some cases and two peaks for other cases under CNS conditions depending on the geometry of joint surfaces.The inclination angle of the critical waviness has been verified to be capable of describing the joint surface roughness and anisotropy.The joint surface is more significantly damaged under CNS conditions than that under CNL conditions.With increment of the inclination angle of the critical waviness,both the normal displaceme nt and shea red-off asperity mass increase,following power law functions;yet the coefficient of deternination under CNL conditions is larger than that under CNS conditions.This is because the CNS condition significantly decreases the inclination angle of the critical waviness during shearing due to the larger degree of asperity degradation.展开更多
The migration mode transition of cancer cell enhances its invasive capability and the drug resistance,where physical confinement of cell microenvironment has been revealed to induce the mesenchymal-amoeboid transition...The migration mode transition of cancer cell enhances its invasive capability and the drug resistance,where physical confinement of cell microenvironment has been revealed to induce the mesenchymal-amoeboid transition(MAT).However,most existing studies are performed in PDMS microchannels,of which the stiffness is much higher than that of most mammalian tissues.Therefore,the amoeboid migration transition observed in these studies is actually induced by the synergistic effect of matrix stiffness and confinement.Since the stiffness of cell microenvironment has been reported to influence the cell migration in 2D substrate,the decoupling of stiffness and confinement effects is thus in need for elucidating the underlying mechanism of MAT.However,it is technically challenging to construct microchannels with physiologically relevant stiffness and channel size,where existing microchannel platforms with physiological relevance stiffness are all with>10μm channel width.Such size is too wide to mimic the physical confinement that migrating cancer cells confront in vivo,and also larger than the width of PDMS channel,in which the MAT of cancer cell was observed.Therefore,an in vitro cell migration platform,which could mimic both stiffness and confinement of the native physical microenvironment during cancer metastasis,could profoundly contribute to researches on cancer cell migration and cellular mechanotransduction.In this paper,we overcome the limitations of engineering soft materials in microscale by combining the collagen-alginate hydrogel with photolithography.This enables us to improve the accuracy of molded microchannel,and thus successfully construct a 3D microchannel platform,which matches the stiffness and width ranges of native environmental confinement that migrating cancer cells confront in vivo.The stiffness(0.3~20 kPa),confinement(channel width:3.5~14μm)and the adhesion ligand density of the microchannel can be tuned independently.Interestingly,using this platform,we observed that the migration speed of cancer cell is influenced by the synergistic effect of channel stiffness and width,and the increasing stiffness reverses the effect of channel width on the migration speed of cancer cells.In addition,MAT has a strong correlation with the channel stiffness.These findings make us reconsider the widely accepted hypothesis:physical confinement can induce MAT.Actually,this transition can only occur in stiff confined microenvironment not in soft one.For soft microchannels,the compliance of the channel walls could cause little cell/nucleus deformation,and the MAT could not be induced.To further investigate the mechanism of MAT,we developed a computational model to simulate the effect of nucleus deformation on MAT.With the model,we found that deforming the cell nuclear by decreasing the nucleus stiffness will reduce the cellmigration speed.This implies that nuclear stiffness plays an important role in the regulation of cancer migration speed and thus MAT in microchannels.The effect of channel stiffness on MAT and migration speed as observed in our experiment could partially explain previous findings reported in the literature,where the increasing matrix stiffness of tumor microenvironment promotes cancer metastasis.Our observations thus highlight the critical role of cell nuclear deformation not only in MAT,but also in regulating cellular mechanotransduction and cell-ECM interactions.This developed platform is capable of mimicking the native physical microenvironment during metastasis,providing a powerful tool for high-throughput screening applications and investigating the interaction between cancer migration and biophysical microenvironment.展开更多
Based on the fractal theory,a normal contact stiffness model is established.In the model,the asperity is initially in elastic deformation under contact interference.As the interference is increased,a transition from e...Based on the fractal theory,a normal contact stiffness model is established.In the model,the asperity is initially in elastic deformation under contact interference.As the interference is increased,a transition from elastic to elastoplastic to full plastic deformation occurs in this order.The critical elastic interference,the first elastoplastic critical interference and the second elastoplastic critical interference are scale-dependent.According to the truncated asperity size distribution function,the relations between the total normal contact stiffness and the total contact load are obtained.The results show the total normal contact stiffness depends on the range of frequency indexes of asperities.The normal contact stiffness in elastic deformation is major contribution to the total normal contact stiffness.When the first six frequency indexes are less than the critical elastic frequency index,the dimensionless load-stiffness relation approximately isF^*r^(K^*r)^3.When the initial frequency index is greater than the critical elastic frequency index,the dimensionless load-stiffness relation approximately isF^*r^K^*r.The comparison between the theoretical results and the experimental results indicates that the theoretical results are consistent with the experimental data;therefore,the present fractal model of contact stiffness is reasonable.展开更多
Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the hi...Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the high strength and high ductility of steel and it has significant energy-absorbing characteristics,which is of high value in deep rock and soil support engineering.However,research on the shear resistance of quasi-NPR steel has not been carried out.To study the shear performance of quasi-NPR steel bolted rock joints,indoor shear tests of bolted rock joints under different normal stress conditions were carried out.Q235 steel and#45 steel,two representative ordinary bolt steels,were set up as a control group for comparative tests to compare and analyze the shear strength,deformation and instability mode,shear energy absorption characteristics,and bolting contribution of different types of bolts.The results show that the jointed rock masses without bolt reinforcement undergo brittle failure under shear load,while the bolted jointed rock masses show obvious ductile failure characteristics.The shear deformation ca-pacity of quasi-NPR steel is more than 3.5 times that of Q235 steel and#45 steel.No fracture occurs in the quasi-NPR steel during large shear deformation and it can provide stable shear resistance.However,the other two types of control bolts become fractured under the same conditions.Quasi-NPR steel has significant energy-absorbing characteristics under shear load and has obvious advantages in terms of absorbing the energy released by shear deformation of jointed rock masses as compared with ordinary steel.In particular,the shear force plays a major role in resisting the shear deformation of Q235 steel and#45 steel,therefore,fracture failure occurs under small bolt deformation.However,the axial force of quasi-NPR steel can be fully exerted when resisting joint shear deformation;the steel itself does not break when large shear deformation occurs,and the supporting effect of the jointed rock mass is effectively guaranteed.展开更多
Periprosthetic joint infection(PJI)following total knee arthroplasty is one of the most catastrophic and costly complications that carries significant patient wellness as well as economic burdens.The road to efficient...Periprosthetic joint infection(PJI)following total knee arthroplasty is one of the most catastrophic and costly complications that carries significant patient wellness as well as economic burdens.The road to efficiently diagnosing and treating PJI is challenging,as there is still no gold standard method to reach the diagnosis as early as desired.There are also international controversies with respect to the best approach to manage PJI cases.In this review,we highlight recent advances in managing PJI following knee arthroplasty surgery and discuss in depth the two-stage revision method.展开更多
Two-order morphology of rock joints named as waviness and unevenness can be separated by morphology classification method,which plays a decisive role in the evolution of shear stress during the shear test.The joint mo...Two-order morphology of rock joints named as waviness and unevenness can be separated by morphology classification method,which plays a decisive role in the evolution of shear stress during the shear test.The joint morphology is obtained by using 3D printing and 3D laser scanning techniques and the joint model samples in two-order morphology are produced by cement mortar.Then,shear tests are performed under different normal loads.Results shows that the waviness is dominant in the total morphology during the shear test,and the shear contribution of unevenness mainly occurs in the climbing phase of shearing process.Comparing the failure modes of two-order morphology,waviness mainly embodies shear dilation characteristics and unevenness mainly shows shear wear characteristics.Based on this,a quantitative parameter is proposed to represent the ratio of the peak shear strength of the two-order morphology to that of total morphology.The functional relationship between the peak shear strength of total and two-order morphologies is determined,providing a theoretical method for further in-depth study on the shear strength of the interaction with two-order morphology of rock joints.展开更多
Piezoelectric ceramic is hard to be integrated with the normal spring structure.To address the above problem,this paper proposed a new geometry of a clip‑like spring which is very similar to binder clip in our daily l...Piezoelectric ceramic is hard to be integrated with the normal spring structure.To address the above problem,this paper proposed a new geometry of a clip‑like spring which is very similar to binder clip in our daily life.The equivalent stiffness of the designed piezoelectric clip‑like spring is thoroughly researched and discussed through the theoretical model,the finite element simulation and the experimental measurement.The results confirm the possibility of designing a compact piezoelectric clip‑like spring,and the equivalent stiffness can be tuned through the several key geometric parameters.Finally,theoretical predictions confirmed by experimental results show that the equivalent stiffness of the spring structure is as function of the instantaneous angle of the clip,this stiffness variation caused by the geometric nonlinearity can be ignored in some practical engineering applications,which means it is possible to linearize the clip‑like spring and simplify the following dynamic model of the corresponding piezoelectric oscillators.展开更多
BACKGROUND Real-time shear wave elastography(SWE)is a non-invasive imaging technique used to measure tissue stiffness by generating and tracking shear waves in real time.This advanced ultrasound-based method provides ...BACKGROUND Real-time shear wave elastography(SWE)is a non-invasive imaging technique used to measure tissue stiffness by generating and tracking shear waves in real time.This advanced ultrasound-based method provides quantitative information regarding tissue elasticity,offering valuable insights into the mechanical properties of biological tissues.However,the application of real-time SWE in the musculoskeletal system and sports medicine has not been extensively studied.AIM To explore the practical value of real-time SWE for assessing Achilles tendon hardness in older adults.METHODS A total of 60 participants were enrolled in the present study,and differences in the elastic moduli of the bilateral Achilles tendons were compared among the following categories:(1)Age:55-60,60-65,and 65-70-years-old;(2)Sex:Male and female;(3)Laterality:Left and right sides;(4)Tendon state:Relaxed and tense state;and(5)Tendon segment:Proximal,middle,and distal.RESULTS There were no significant differences in the elastic moduli of the bilateral Achilles tendons when comparing by age or sex(P>0.05).There were,however,significant differences when comparing by tendon side,state,or segment(P<0.05).CONCLUSION Real-time SWE plays a significant role compared to other examination methods in the evaluation of Achilles tendon hardness in older adults.展开更多
Objective:To determine the effect of rehabilitation education on pain,knee stiffness and performance difficulty in patients undergoing knee replacement surgery.Methods:This randomized clinical trial study was performe...Objective:To determine the effect of rehabilitation education on pain,knee stiffness and performance difficulty in patients undergoing knee replacement surgery.Methods:This randomized clinical trial study was performed on 96 patients undergoing knee replacement surgery,who were randomly divided into two groups:the control group and the intervention group,with 48 patients in each group.In the intervention group,the patients received educational intervention in four stages one day before surgery,24 h and 48 h later,upon discharge from the hospital.In the control group,only the routine of the hospital was performed.Questionnaires were completed before and 6 weeks after the intervention.Results:The mean scores of pain,knee stiffness and performance difficulty were significantly decreased in the intervention group(P=0.01).Compared to the control group,the intervention group had a better outcome of the illness,including pain,knee stiffness and performance difficulty(P=0.001).Conclusion:Rehabilitation education could be a suitable way to improve the surgical outcomes of patients undergoing total knee replacement.展开更多
On January 5,the Chinese People's Association for Friendship with Foreign Countries and the Chinese People's Institute of Foreign Affairs jointly hosted a reception commemorating the 45th anniversary of the es...On January 5,the Chinese People's Association for Friendship with Foreign Countries and the Chinese People's Institute of Foreign Affairs jointly hosted a reception commemorating the 45th anniversary of the establishment of diplomatic relationship between China and the United States in Beijing.Member of the Political Bureau of the CPC Central Committee and Foreign Minister Wang Yi attended the commemoration and delivered aspeech.David Meale,ChargédAffaires at the U.S.Embassy in China,addressed the reception.He extended on behalf of the U.S.side congratulations on the anniversary,expressing the readiness of the U.S.to implement the consensus reached by the two heads of state and promote the steady development of U.S.-China relations.More than 350 people from all walks of life of both countries attended the reception.展开更多
A closed but approximate formula of Green’s function for an arbitrary aggregate of cubic crystallites is given to derive the e?ective elastic sti?ness tensor of the polycrystal. This formula, which includes thr...A closed but approximate formula of Green’s function for an arbitrary aggregate of cubic crystallites is given to derive the e?ective elastic sti?ness tensor of the polycrystal. This formula, which includes three elastic constants of single cubic crystal and ?ve texture coe?cients, accounts for the e?ects of the orientation distribution function (ODF) up to terms linear in the tex- ture coe?cients. Thus it is expected that our formula would be applicable to arbitrary aggregates with weak texture or to materials such as aluminum whose single crystal has weak anisotropy. Three examples are presented to compare predictions from our formula with those from Nishioka and Lothe’s formula and Synge’s contour integral through numerical integration. As an applica- tion of Green’s function, we brie?y describe the procedure of deriving the e?ective elastic sti?ness tensor for an orthorhombic aggregate of cubic crystallites. The comparison of the computational results given by the ?nite element method and our e?ective elastic sti?ness tensor is made by an example.展开更多
基金supported by the Shenzhen Fundamental Research Program(Grant No.JCYJ20220818095605012)the National Natural Science Foundation of China(Grant No.51909026)the Fund of Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization(Grant No.2020-08).
文摘Rock joints are one of the vital discontinuities in a natural rock mass.How to accurately and conveniently determine joint normal stiffness is therefore significant in rock mechanics.Here,first,seven existing methods for determining joint normal stiffness were introduced and reviewed,among which MethodⅠ(the indirect measurement method),MethodⅡ(the direct determination method),MethodⅢ(the across-joint strain gauge measurement method)and MethodⅣ(the deformation measuring ring method)are via destructive uniaxial compression testing,while MethodⅤ(the best fitting method),MethodⅥ(the rapid evaluation method)and MethodⅦ(the effective modulus method)are through wave propagation principles and nondestructive ultrasonic testing.Subsequently,laboratory tests of intact and jointed sandstone specimens were conducted following the testing requirements and pro-cedures of those seven methods.A comparison among those methods was then performed.The results show that Method I,i.e.the benchmark method,is reliable and stable.MethodⅡhas a conceptual drawback,and its accuracy is acceptable at only very low stress levels.Relative errors in the results from MethodⅢare very large.With MethodⅣ,the testing results are sufficiently accurate despite the strict testing environment and complicated testing procedures.The results from MethodⅤare greatly unstable and significantly dependent on the natural frequency of the transducers.The joint normal stiffness determined with MethodⅥis stable and accurate,although data processing is complex.MethodⅦcould be adopted to determine the joint normal stiffness corresponding to the rock elastic deformation phase only.Consequently,it is suggested that MethodsⅠ,ⅣandⅥshould be adopted for the mea-surement of joint normal stiffness.The findings could be helpful in selecting an appropriate method to determine joint normal stiffness and,hence,to better solve discontinuous rock mass problems.
文摘Background: Loose bodies (LBs) within the knee joint are commonly encountered during clinical practice and are frequently observed during knee arthroscopy. The primary treatment involves the removal of loose bodies;however, their complete eradication is often challenging and may not address underlying diseases, leading to persistent symptoms and the risk of new loose body formation. Aim: This case report aims to present the findings and surgical management of a 52-year-old male with an unusually large osseous loose body in the knee joint and associated pathologies. Case Presentation: The patient, a 52-year-old male, experienced recurrent episodes of severe, sudden, and painful locking of the knee joint, leading to difficulties moving. A plain MRI study was conducted to evaluate the condition of the knee joint, which revealed various degenerative changes and the presence of a loose body. Subsequently, an arthroscopic examination was performed under general anesthesia, uncovering the presence of an abnormally large loose body, as well as other pathologies including chondropathy, meniscal degeneration, and Baker’s cyst. Conclusion: Loose bodies (LBs) in the knee joint pose significant challenges and may lead to debilitating symptoms. Timely diagnosis and appropriate surgical intervention are crucial for symptom relief and the prevention of further joint damage as arthroscopic excision. Comprehensive imaging has a vital role in guiding treatment decisions and optimizing patient outcomes. In this case, the removal of the loose body improved patient outcomes and helped prevent potential joint complications.
基金Hainan Natural Science Foundation Project(819MS122)。
文摘Objective:To investigate the value of liver stiffness measurement(LSM)combined with S index in predicting the degree of liver fibrosis in hepatitis B patients.Methods:A total of 187 chronic hepatitis B patients who were admitted to the Department of Infection,the First Affiliated Hospital of Hainan Medical College from January 2019 to December 2021 were selected.General data were collected,blood routine,liver function,liver fibrosis and liver stiffness measurement were tested,and S index,APRI and FIB-4 index were calculated,and liver biopsy was performed.Results:According to the pathological results of liver puncture,The patients were divided into no significant fibrosis group(n=86),significant fibrosis group(n=71)and cirrhosis group(n=30).There were significant differences in age,PLT,GGT,ALB,S index,HA,LN and LSM levels among the three groups(P<0.05).There was a good correlation between S index and the degree of hepatic fibrosis(rs=0.738,P<0.001).The AUC of S index and LSM for the diagnosis of significant fibrosis in hepatitis B were 0.873 and 0.792,respectively.And the AUC of S index and LSM for the diagnosis of liver cirrhosis were 0.966 and 0.879,respectively.The AUC for the combined diagnosis of significant fibrosis and cirrhosis were 0.908 and 0.988,respectively.The AUROC of combined detection in the diagnosis of cirrhosis was higher than that of LSM,APRI and FIB-4(P<0.05).Conclusion:LSM combined with S index has certain application value in the diagnosis of liver fibrosis/cirrhosis in hepatitis B patients.
基金partially funded by National Natural Science Foundation of China(Grant Nos.51979272 and 51709260)State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,China(Grant No.SKLGDUEK1906)。
文摘In this context,we experimentally studied the anisotropic mechanical behaviors of rough-walled plaster joints using a servo-controlled direct shear apparatus under both constant normal load(CNL)and constant normal stiffness(CNS)conditions.The shear-induced variations in the normal displacement,shear stress,normal stress and sheared-off asperity mass are analyzed and correlated with the inclination angle of the critical waviness of joint surfaces.The results show that CNS condition gives rise to a smaller normal displacement due to the larger normal stress during shearing,compared with CNL condition.Under CNL conditions,there is one peak shear stress during shearing,whereas there are no peak shear stress for some cases and two peaks for other cases under CNS conditions depending on the geometry of joint surfaces.The inclination angle of the critical waviness has been verified to be capable of describing the joint surface roughness and anisotropy.The joint surface is more significantly damaged under CNS conditions than that under CNL conditions.With increment of the inclination angle of the critical waviness,both the normal displaceme nt and shea red-off asperity mass increase,following power law functions;yet the coefficient of deternination under CNL conditions is larger than that under CNS conditions.This is because the CNS condition significantly decreases the inclination angle of the critical waviness during shearing due to the larger degree of asperity degradation.
基金financially supported by the National Natural Science Foundation of China ( 11532009, 11602191,21775117)the General Financial Grant from the China Postdoctoral Science Foundation ( 2016M592773)the High Level Returned Overseas Students Foundation ( [2018]642)
文摘The migration mode transition of cancer cell enhances its invasive capability and the drug resistance,where physical confinement of cell microenvironment has been revealed to induce the mesenchymal-amoeboid transition(MAT).However,most existing studies are performed in PDMS microchannels,of which the stiffness is much higher than that of most mammalian tissues.Therefore,the amoeboid migration transition observed in these studies is actually induced by the synergistic effect of matrix stiffness and confinement.Since the stiffness of cell microenvironment has been reported to influence the cell migration in 2D substrate,the decoupling of stiffness and confinement effects is thus in need for elucidating the underlying mechanism of MAT.However,it is technically challenging to construct microchannels with physiologically relevant stiffness and channel size,where existing microchannel platforms with physiological relevance stiffness are all with>10μm channel width.Such size is too wide to mimic the physical confinement that migrating cancer cells confront in vivo,and also larger than the width of PDMS channel,in which the MAT of cancer cell was observed.Therefore,an in vitro cell migration platform,which could mimic both stiffness and confinement of the native physical microenvironment during cancer metastasis,could profoundly contribute to researches on cancer cell migration and cellular mechanotransduction.In this paper,we overcome the limitations of engineering soft materials in microscale by combining the collagen-alginate hydrogel with photolithography.This enables us to improve the accuracy of molded microchannel,and thus successfully construct a 3D microchannel platform,which matches the stiffness and width ranges of native environmental confinement that migrating cancer cells confront in vivo.The stiffness(0.3~20 kPa),confinement(channel width:3.5~14μm)and the adhesion ligand density of the microchannel can be tuned independently.Interestingly,using this platform,we observed that the migration speed of cancer cell is influenced by the synergistic effect of channel stiffness and width,and the increasing stiffness reverses the effect of channel width on the migration speed of cancer cells.In addition,MAT has a strong correlation with the channel stiffness.These findings make us reconsider the widely accepted hypothesis:physical confinement can induce MAT.Actually,this transition can only occur in stiff confined microenvironment not in soft one.For soft microchannels,the compliance of the channel walls could cause little cell/nucleus deformation,and the MAT could not be induced.To further investigate the mechanism of MAT,we developed a computational model to simulate the effect of nucleus deformation on MAT.With the model,we found that deforming the cell nuclear by decreasing the nucleus stiffness will reduce the cellmigration speed.This implies that nuclear stiffness plays an important role in the regulation of cancer migration speed and thus MAT in microchannels.The effect of channel stiffness on MAT and migration speed as observed in our experiment could partially explain previous findings reported in the literature,where the increasing matrix stiffness of tumor microenvironment promotes cancer metastasis.Our observations thus highlight the critical role of cell nuclear deformation not only in MAT,but also in regulating cellular mechanotransduction and cell-ECM interactions.This developed platform is capable of mimicking the native physical microenvironment during metastasis,providing a powerful tool for high-throughput screening applications and investigating the interaction between cancer migration and biophysical microenvironment.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51105304,51475364)the China Postdoctoral Science Foundation funded project(Grant No.2014M552467).
文摘Based on the fractal theory,a normal contact stiffness model is established.In the model,the asperity is initially in elastic deformation under contact interference.As the interference is increased,a transition from elastic to elastoplastic to full plastic deformation occurs in this order.The critical elastic interference,the first elastoplastic critical interference and the second elastoplastic critical interference are scale-dependent.According to the truncated asperity size distribution function,the relations between the total normal contact stiffness and the total contact load are obtained.The results show the total normal contact stiffness depends on the range of frequency indexes of asperities.The normal contact stiffness in elastic deformation is major contribution to the total normal contact stiffness.When the first six frequency indexes are less than the critical elastic frequency index,the dimensionless load-stiffness relation approximately isF^*r^(K^*r)^3.When the initial frequency index is greater than the critical elastic frequency index,the dimensionless load-stiffness relation approximately isF^*r^K^*r.The comparison between the theoretical results and the experimental results indicates that the theoretical results are consistent with the experimental data;therefore,the present fractal model of contact stiffness is reasonable.
基金This study has been funded by the National Natural Science Foundation of China(Grant No.41941018)and the Second Tibetan Plateau Scientific Expedition and Research Grant(Grant No.2019QZKK0708).
文摘Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the high strength and high ductility of steel and it has significant energy-absorbing characteristics,which is of high value in deep rock and soil support engineering.However,research on the shear resistance of quasi-NPR steel has not been carried out.To study the shear performance of quasi-NPR steel bolted rock joints,indoor shear tests of bolted rock joints under different normal stress conditions were carried out.Q235 steel and#45 steel,two representative ordinary bolt steels,were set up as a control group for comparative tests to compare and analyze the shear strength,deformation and instability mode,shear energy absorption characteristics,and bolting contribution of different types of bolts.The results show that the jointed rock masses without bolt reinforcement undergo brittle failure under shear load,while the bolted jointed rock masses show obvious ductile failure characteristics.The shear deformation ca-pacity of quasi-NPR steel is more than 3.5 times that of Q235 steel and#45 steel.No fracture occurs in the quasi-NPR steel during large shear deformation and it can provide stable shear resistance.However,the other two types of control bolts become fractured under the same conditions.Quasi-NPR steel has significant energy-absorbing characteristics under shear load and has obvious advantages in terms of absorbing the energy released by shear deformation of jointed rock masses as compared with ordinary steel.In particular,the shear force plays a major role in resisting the shear deformation of Q235 steel and#45 steel,therefore,fracture failure occurs under small bolt deformation.However,the axial force of quasi-NPR steel can be fully exerted when resisting joint shear deformation;the steel itself does not break when large shear deformation occurs,and the supporting effect of the jointed rock mass is effectively guaranteed.
文摘Periprosthetic joint infection(PJI)following total knee arthroplasty is one of the most catastrophic and costly complications that carries significant patient wellness as well as economic burdens.The road to efficiently diagnosing and treating PJI is challenging,as there is still no gold standard method to reach the diagnosis as early as desired.There are also international controversies with respect to the best approach to manage PJI cases.In this review,we highlight recent advances in managing PJI following knee arthroplasty surgery and discuss in depth the two-stage revision method.
基金funded by National Natural Science Foundation of China(Grant Nos.42272333 and 42277147)。
文摘Two-order morphology of rock joints named as waviness and unevenness can be separated by morphology classification method,which plays a decisive role in the evolution of shear stress during the shear test.The joint morphology is obtained by using 3D printing and 3D laser scanning techniques and the joint model samples in two-order morphology are produced by cement mortar.Then,shear tests are performed under different normal loads.Results shows that the waviness is dominant in the total morphology during the shear test,and the shear contribution of unevenness mainly occurs in the climbing phase of shearing process.Comparing the failure modes of two-order morphology,waviness mainly embodies shear dilation characteristics and unevenness mainly shows shear wear characteristics.Based on this,a quantitative parameter is proposed to represent the ratio of the peak shear strength of the two-order morphology to that of total morphology.The functional relationship between the peak shear strength of total and two-order morphologies is determined,providing a theoretical method for further in-depth study on the shear strength of the interaction with two-order morphology of rock joints.
基金This work was supported by the National Natural Science Foundation of China(No.51705251)the Introduction of Talent Research Start-up Fund of Nanjing Institute of Technology(No.YKJ201960).
文摘Piezoelectric ceramic is hard to be integrated with the normal spring structure.To address the above problem,this paper proposed a new geometry of a clip‑like spring which is very similar to binder clip in our daily life.The equivalent stiffness of the designed piezoelectric clip‑like spring is thoroughly researched and discussed through the theoretical model,the finite element simulation and the experimental measurement.The results confirm the possibility of designing a compact piezoelectric clip‑like spring,and the equivalent stiffness can be tuned through the several key geometric parameters.Finally,theoretical predictions confirmed by experimental results show that the equivalent stiffness of the spring structure is as function of the instantaneous angle of the clip,this stiffness variation caused by the geometric nonlinearity can be ignored in some practical engineering applications,which means it is possible to linearize the clip‑like spring and simplify the following dynamic model of the corresponding piezoelectric oscillators.
基金Supported by Sichuan Orthopaedic Hospital Research Project,No.2019MS02.
文摘BACKGROUND Real-time shear wave elastography(SWE)is a non-invasive imaging technique used to measure tissue stiffness by generating and tracking shear waves in real time.This advanced ultrasound-based method provides quantitative information regarding tissue elasticity,offering valuable insights into the mechanical properties of biological tissues.However,the application of real-time SWE in the musculoskeletal system and sports medicine has not been extensively studied.AIM To explore the practical value of real-time SWE for assessing Achilles tendon hardness in older adults.METHODS A total of 60 participants were enrolled in the present study,and differences in the elastic moduli of the bilateral Achilles tendons were compared among the following categories:(1)Age:55-60,60-65,and 65-70-years-old;(2)Sex:Male and female;(3)Laterality:Left and right sides;(4)Tendon state:Relaxed and tense state;and(5)Tendon segment:Proximal,middle,and distal.RESULTS There were no significant differences in the elastic moduli of the bilateral Achilles tendons when comparing by age or sex(P>0.05).There were,however,significant differences when comparing by tendon side,state,or segment(P<0.05).CONCLUSION Real-time SWE plays a significant role compared to other examination methods in the evaluation of Achilles tendon hardness in older adults.
文摘Objective:To determine the effect of rehabilitation education on pain,knee stiffness and performance difficulty in patients undergoing knee replacement surgery.Methods:This randomized clinical trial study was performed on 96 patients undergoing knee replacement surgery,who were randomly divided into two groups:the control group and the intervention group,with 48 patients in each group.In the intervention group,the patients received educational intervention in four stages one day before surgery,24 h and 48 h later,upon discharge from the hospital.In the control group,only the routine of the hospital was performed.Questionnaires were completed before and 6 weeks after the intervention.Results:The mean scores of pain,knee stiffness and performance difficulty were significantly decreased in the intervention group(P=0.01).Compared to the control group,the intervention group had a better outcome of the illness,including pain,knee stiffness and performance difficulty(P=0.001).Conclusion:Rehabilitation education could be a suitable way to improve the surgical outcomes of patients undergoing total knee replacement.
文摘On January 5,the Chinese People's Association for Friendship with Foreign Countries and the Chinese People's Institute of Foreign Affairs jointly hosted a reception commemorating the 45th anniversary of the establishment of diplomatic relationship between China and the United States in Beijing.Member of the Political Bureau of the CPC Central Committee and Foreign Minister Wang Yi attended the commemoration and delivered aspeech.David Meale,ChargédAffaires at the U.S.Embassy in China,addressed the reception.He extended on behalf of the U.S.side congratulations on the anniversary,expressing the readiness of the U.S.to implement the consensus reached by the two heads of state and promote the steady development of U.S.-China relations.More than 350 people from all walks of life of both countries attended the reception.
基金Project supported by the Natural Science Foundation of Jiangxi Province (No. 0450035).
文摘A closed but approximate formula of Green’s function for an arbitrary aggregate of cubic crystallites is given to derive the e?ective elastic sti?ness tensor of the polycrystal. This formula, which includes three elastic constants of single cubic crystal and ?ve texture coe?cients, accounts for the e?ects of the orientation distribution function (ODF) up to terms linear in the tex- ture coe?cients. Thus it is expected that our formula would be applicable to arbitrary aggregates with weak texture or to materials such as aluminum whose single crystal has weak anisotropy. Three examples are presented to compare predictions from our formula with those from Nishioka and Lothe’s formula and Synge’s contour integral through numerical integration. As an applica- tion of Green’s function, we brie?y describe the procedure of deriving the e?ective elastic sti?ness tensor for an orthorhombic aggregate of cubic crystallites. The comparison of the computational results given by the ?nite element method and our e?ective elastic sti?ness tensor is made by an example.