期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Advances in joint roughness coefficient (JRC) and its engineering applications 被引量:6
1
作者 Nick Barton Changshuo Wang Rui Yong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3352-3379,共28页
The joint roughness coefficient (JRC), introduced in Barton (1973) represented a new method in rock mechanics and rock engineering to deal with problems related to joint roughness and shear strength estimation. It has... The joint roughness coefficient (JRC), introduced in Barton (1973) represented a new method in rock mechanics and rock engineering to deal with problems related to joint roughness and shear strength estimation. It has the advantages of its simple form, easy estimation, and explicit consideration of scale effects, which make it the most widely accepted parameter for roughness quantification since it was proposed. As a result, JRC has attracted the attention of many scholars who have developed JRC-related methods in many areas, such as geological engineering, multidisciplinary geosciences, mining mineral processing, civil engineering, environmental engineering, and water resources. Because of such a developing trend, an overview of JRC is presented here to provide a clear perspective on the concepts, methods, applications, and trends related to its extensions. This review mainly introduces the origin and connotation of JRC, JRC-related roughness measurement, JRC estimation methods, JRC-based roughness characteristics investigation, JRC-based rock joint property description, JRC's influence on rock mass properties, and JRC-based rock engineering applications. Moreover, the representativeness of the joint samples and the determination of the sampling interval for rock joint roughness measurements are discussed. In the future, the existing JRC-related methods will likely be further improved and extended in rock engineering. 展开更多
关键词 Joint roughness coefficient(JRC) Rock joints ROUGHNESS Shear strength Scale effect
下载PDF
Rock joint coefficients and their computerized classification 被引量:3
2
作者 Tomás Ficker 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第5期701-709,共9页
A computerized method for determining rock joint coefficients is presented.Two relative similarity indicators are introduced to classify surface morphology of rock joints.The classification enables to compare investig... A computerized method for determining rock joint coefficients is presented.Two relative similarity indicators are introduced to classify surface morphology of rock joints.The classification enables to compare investigated and database rock joints.Such a comparison aims at finding the couple of surfaces that are distinguished by the highest dynamical conformity.The first absolute indicator results from the Fourier matrix and evaluates wavy shapes of surfaces.The second absolute indicator quantifies the heights of surface reliefs and is defined as the root mean square height of the surface outline.Numerical reliability of these indicators is tested within the surface analysis of a series of limestone specimens.Besides the computerized assessment,25 people have performed visual assessment of these limestone specimens.The results of visual assessments have been statistically processed and compared to the results received from the computerized procedure.The newly introduced absolute indicators have proved to be prospective numerical tools for evaluating joint rock coefficients. 展开更多
关键词 Rock joints Shear strength Joint rock coefficients Numerical indicators Computerized assessment
下载PDF
Data-driven estimation of joint roughness coefficient 被引量:3
3
作者 Hadi Fathipour-Azar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1428-1437,共10页
Joint roughness is one of the most important issues in the hydromechanical behavior of rock mass.Therefore,the joint roughness coefficient(JRC)estimation is of paramount importance in geomechanics engineering applicat... Joint roughness is one of the most important issues in the hydromechanical behavior of rock mass.Therefore,the joint roughness coefficient(JRC)estimation is of paramount importance in geomechanics engineering applications.Studies show that the application of statistical parameters alone may not produce a sufficiently reliable estimation of the JRC values.Therefore,alternative data-driven methods are proposed to assess the JRC values.In this study,Gaussian process(GP),K-star,random forest(RF),and extreme gradient boosting(XGBoost)models are employed,and their performance and accuracy are compared with those of benchmark regression formula(i.e.Z2,Rp,and SDi)for the JRC estimation.To analyze the models’performance,112 rock joint profile datasets having eight common statistical parameters(R_(ave),R_(max),SD_(h),iave,SD_(i),Z_(2),R_(p),and SF)and one output variable(JRC)are utilized,of which 89 and 23 datasets are used for training and validation of models,respectively.The interpretability of the developed XGBoost model is presented in terms of feature importance ranking,partial dependence plots(PDPs),feature interaction,and local interpretable model-agnostic explanations(LIME)techniques.Analyses of results show that machine learning models demonstrate higher accuracy and precision for estimating JRC values compared with the benchmark empirical equations,indicating the generalization ability of the data-driven models in better estimation accuracy. 展开更多
关键词 Joint roughness coefficient(JRC) Statistical parameters Gaussian process(GP) K-star Random forest(RF) Extreme gradient boosting(XGBoost) Correlation Machine learning(ML) Sensitivity analysis
下载PDF
A photogrammetric approach for quantifying the evolution of rock joint void geometry under varying contact states
4
作者 Rui Yong Changshuo Wang +1 位作者 Nick Barton Shigui Du 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期461-477,共17页
Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques o... Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques often require specialized equipment and skilled operators,posing practical challenges.In this study,a cost-effective photogrammetric approach is proposed.Particularly,local coordinate systems are established to facilitate the alignment and precise quantification of the relative position between two halves of a rock joint.Push/pull tests are conducted on rock joints with varying roughness levels to induce different contact states.A high-precision laser scanner serves as a benchmark for evaluating the photogrammetry method.Despite certain deviations exist,the measured evolution of void geometry is generally consistent with the qualitative findings of previous studies.The photogrammetric measurements yield comparable accuracy to laser scanning,with maximum errors of 13.2%for aperture and 14.4%for void volume.Most joint matching coefficient(JMC)measurement errors are below 20%.Larger measurement errors occur primarily in highly mismatched rock joints with JMC values below 0.2,but even in cases where measurement errors exceed 80%,the maximum JMC error is only 0.0434.Thus,the proposed photogrammetric approach holds promise for widespread application in void geometry measurements in rock joints. 展开更多
关键词 Rock joint Void geometry evolution PHOTOGRAMMETRY APERTURE Void volume Joint matching coefficient
下载PDF
On the calibration of a shear stress criterion for rock joints to represent the full stress-strain profile
5
作者 Akram Deiminiat Jonathan D.Aubertin Yannic Ethier 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期379-392,共14页
Conventional numerical solutions developed to describe the geomechanical behavior of rock interfaces subjected to differential load emphasize peak and residual shear strengths.The detailed analysis of preand post-peak... Conventional numerical solutions developed to describe the geomechanical behavior of rock interfaces subjected to differential load emphasize peak and residual shear strengths.The detailed analysis of preand post-peak shear stress-displacement behavior is central to various time-dependent and dynamic rock mechanic problems such as rockbursts and structural instabilities in highly stressed conditions.The complete stress-displacement surface(CSDS)model was developed to describe analytically the pre-and post-peak behavior of rock interfaces under differential loads.Original formulations of the CSDS model required extensive curve-fitting iterations which limited its practical applicability and transparent integration into engineering tools.The present work proposes modifications to the CSDS model aimed at developing a comprehensive and modern calibration protocol to describe the complete shear stressdisplacement behavior of rock interfaces under differential loads.The proposed update to the CSDS model incorporates the concept of mobilized shear strength to enhance the post-peak formulations.Barton’s concepts of joint roughness coefficient(JRC)and joint compressive strength(JCS)are incorporated to facilitate empirical estimations for peak shear stress and normal closure relations.Triaxial/uniaxial compression test and direct shear test results are used to validate the updated model and exemplify the proposed calibration method.The results illustrate that the revised model successfully predicts the post-peak and complete axial stressestrain and shear stressedisplacement curves for rock joints. 展开更多
关键词 Full shear profile Post-peak shear behavior Rock joint Joint roughness coefficient(JRC) Axial stress-strain curve
下载PDF
Shear mechanical properties and fracturing responses of layered rough jointed rock-like materials
6
作者 Xinxin Nie Qian Yin +7 位作者 Manchao He Qi Wang Hongwen Jing Bowen Zheng Bo Meng Tianci Deng Zheng Jiang Jiangyu Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2417-2434,共18页
This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm ... This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm were casted using rock-like materials,with anisotropic angle(α)and joint roughness coefficient(JRC)ranging from 15°to 75°and 2-20,respectively.The direct shear tests were conducted under the application of initial normal stress(σ_(n)) ranging from 1-4 MPa.The test results indicate significant differences in mechanical properties,acoustic emission(AE)responses,maximum principal strain fields,and ultimate failure modes of layered samples under different test conditions.The peak stress increases with the increasingαand achieves a maximum value atα=60°or 75°.As σ_(n) increases,the peak stress shows an increasing trend,with correlation coefficients R² ranging from 0.918 to 0.995 for the linear least squares fitting.As JRC increases from 2-4 to 18-20,the cohesion increases by 86.32%whenα=15°,while the cohesion decreases by 27.93%whenα=75°.The differences in roughness characteristics of shear failure surface induced byαresult in anisotropic post-peak AE responses,which is characterized by active AE signals whenαis small and quiet AE signals for a largeα.For a given JRC=6-8 andσ_(n)=1 MPa,asαincreases,the accumulative AE counts increase by 224.31%(αincreased from 15°to 60°),and then decrease by 14.68%(αincreased from 60°to 75°).The shear failure surface is formed along the weak interlayer whenα=15°and penetrates the layered matrix whenα=60°.Whenα=15°,as σ_(n) increases,the adjacent weak interlayer induces a change in the direction of tensile cracks propagation,resulting in a stepped pattern of cracks distribution.The increase in JRC intensifies roughness characteristics of shear failure surface for a smallα,however,it is not pronounced for a largeα.The findings will contribute to a better understanding of the mechanical responses and failure mechanisms of the layered rocks subjected to shear loads. 展开更多
关键词 layered samples anisotropic angle joint roughness coefficient mechanical properties acoustic emission response fracturing evolution failure modes
下载PDF
Some remarks on the dynamical conformity of rock joints 被引量:2
7
作者 T.Ficker 《International Journal of Mining Science and Technology》 EI CSCD 2018年第3期385-390,共6页
A recently developed computerized method for assessing the rock joint coefficients is discussed. The performances of formerly introduced relative similarity indicators, along with the correlation coefficient, are subj... A recently developed computerized method for assessing the rock joint coefficients is discussed. The performances of formerly introduced relative similarity indicators, along with the correlation coefficient, are subjected to critical analysis. These relative numerical indicators are replaced by two absolute indicators whose properties better describe surface textures of rock joints. The first absolute indicator results from the Fourier Matrix and evaluates wavy shapes of surfaces. The second absolute indicator quantifies the heights of surface reliefs, and is defined as the root mean square height of the surface outline. The behavior of the newly introduced numerical indicators are investigated by means of the deterministic periodic surface reliefs. The practical application of the new indicators is presented and the convenient performances of both the indicators are documented. 展开更多
关键词 Rock joints Shear strength Joint rock coefficients Numerical indicators Computerized assessment
下载PDF
Investigation on the Indeterminate Information of Rock Joint Roughness through a Neutrosophic Number Approach 被引量:1
8
作者 Changshuo Wang Liangqing Wang +2 位作者 Shigui Du Jun Ye Rui Yong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期973-991,共19页
To better estimate the rock joint shear strength,accurately determining the rock joint roughness coefficient(JRC)is the first step faced by researchers and engineers.However,there are incomplete,imprecise,and indeterm... To better estimate the rock joint shear strength,accurately determining the rock joint roughness coefficient(JRC)is the first step faced by researchers and engineers.However,there are incomplete,imprecise,and indeterminate problems during the process of calculating the JRC.This paper proposed to investigate the indeterminate information of rock joint roughness through a neutrosophic number approach and,based on this information,reported a method to capture the incomplete,uncertain,and imprecise information of the JRC in uncertain environments.The uncertainties in the JRC determination were investigated by the regression correlations based on commonly used statistical parameters,which demonstrated the drawbacks of traditional JRC regression correlations in handling the indeterminate information of the JRC.Moreover,the commonly used statistical parameters cannot reflect the roughness contribution differences of the asperities with various scales,which induces additional indeterminate information.A method based on the neutrosophic number(NN)and spectral analysis was proposed to capture the indeterminate information of the JRC.The proposed method was then applied to determine the JRC values for sandstone joint samples collected from a rock landslide.The comparison between the JRC results obtained by the proposed method and experimental results validated the effectiveness of the NN.Additionally,comparisons made between the spectral analysis and common statistical parameters based on the NN also demonstrated the advantage of spectral analysis.Thus,the NN and spectral analysis combined can effectively handle the indeterminate information in the rock joint roughness. 展开更多
关键词 Rock joint roughness coefficient UNCERTAINTY indeterminate information neutrosophic number spectral analysis
下载PDF
Macro and meso characteristics evolution on shear behavior of rock joints 被引量:1
9
作者 李凯辉 曹平 +1 位作者 张科 钟涌芳 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3087-3096,共10页
Direct shear tests were conducted on the rock joints under constant normal load(CNL), while the acoustic emission(AE) signals generated during shear tests were monitored with PAC Micro-II system. Before and after shea... Direct shear tests were conducted on the rock joints under constant normal load(CNL), while the acoustic emission(AE) signals generated during shear tests were monitored with PAC Micro-II system. Before and after shearing, the surfaces of rock joints were measured by the Talysurf CLI 2000. By correlating the AE events with the shear stress-shear displacement curve, one can observe four periods of the whole course of shearing of rock joints. By the contrast of AE location and actual damage zone, it is elucidated that the AE event is related to the morphology of the joint. With the increase of shearing times, the shear behavior of rock joints gradually presents from the response of brittle behavior to that of ductile behavior. By combining the results of topography measurement, four morphological parameters of joint surface, S p(the maximum height of joint surface), N(number of islands), A(projection area) and V(volume of joint) were introduced, which decrease with shearing. Both the joint roughness coefficient(JRC) and joint matching coefficient(JMC) drop with shearing, and the shear strength of rock joints can be predicted by the JRC-JMC model. It establishes the relationship between micro-topography and macroscopic strength, which have the same change rule with shearing. 展开更多
关键词 rock joint shear behavior surface morphology acoustic emission joint roughness coefficient (JRC) joint matchingcoefficient (JMC)
下载PDF
Developments and Applications of Neutrosophic Theory in Civil Engineering Fields:A Review
10
作者 Zhenhan Zhang Jun Ye 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期887-916,共30页
Neutrosophic theory can effectively and reasonably express indeterminate,inconsistent,and incomplete information.Since Smarandache proposed the neutrosophic theory in 1998,neutrosophic theory and related research have... Neutrosophic theory can effectively and reasonably express indeterminate,inconsistent,and incomplete information.Since Smarandache proposed the neutrosophic theory in 1998,neutrosophic theory and related research have been developed and applied to many important fields.Indeterminacy and fuzziness are one of the main research issues in the field of civil engineering.Therefore,the neutrosophic theory is very suitable for modeling and applications of civil engineering fields.This review paper mainly describes the recent developments and applications of neutrosophic theory in four important research areas of civil engineering:the neutrosophic decision-making theory and applied methods,the neutrosophic evaluation methods and applications of slope stability,the neutrosophic expressions and analyses of rock joint roughness coefficient,and the neutrosophic structural optimization methods and applications.In terms of these research achievements in the four areas of civil engineering,the neutrosophic theory demonstrates its advantages in dealing with the indeterminate and inconsistent issues in civil engineering and the effectiveness and practicability of existing applied methods.In the future work,the existing research results will be further improved and extended in civil engineering problems.In addition,the neutrosophic theory will also have better application prospects in other fields of civil engineering. 展开更多
关键词 Neutrosophic theory civil engineering DECISION-MAKING slope stability joint roughness coefficient structural optimization
下载PDF
Study on Relationship Between Arc Behavior and Joint Forming in Cold Metal Transfer Welding Technology with Polarity⁃Exchanging
11
作者 Lijun Han Pengyu Lin +2 位作者 Gengwei Zhang Lihui Zhong Changhua Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第5期81-86,共6页
Cold metal transfer with polarity⁃exchanging is a new integrated welding technology based on MIG.Due to the alternation of the positive and negative polarities of the wire,favorable control upon the deposition rate an... Cold metal transfer with polarity⁃exchanging is a new integrated welding technology based on MIG.Due to the alternation of the positive and negative polarities of the wire,favorable control upon the deposition rate and the welding shape coefficient was obtained in order to meet the desired joint design,and the related controlling principles and joint characteristics were reported.Droplet transfer physical behavior exhibited strong dependability on the studied welding parameters,such as welding voltage,welding current,wire feeding speed,and polarity⁃exchanging.This welding technology provides a new way for the welding of body⁃in⁃white(BIW)thin sheet with special demands.Moreover,the typical quality defects of MIG were greatly improved.Our study provides important technical information from the perspective of industrial application of MIG and sheds light on the higher application level of MIG in BIW welding. 展开更多
关键词 MIG cold metal transfer polarity⁃exchanging arc behavior joint shape coefficient
下载PDF
Morphology characteristics of joint surface in rock mass
12
作者 胡建华 阮德修 +1 位作者 罗先伟 周科平 《Journal of Central South University》 SCIE EI CAS 2012年第10期2918-2925,共8页
In order to quantify the characteristics of the surface of jointed rock mass,new equipment,the three-dimensional laser surface topography instrument,was used to accurately measure surface morphology of joints.Scan pic... In order to quantify the characteristics of the surface of jointed rock mass,new equipment,the three-dimensional laser surface topography instrument,was used to accurately measure surface morphology of joints.Scan pictures and parameters were obtained to describe the rock joint surface characteristics,for example,the height frequency of surface,and mean square roughness.Using the method of fractal dimension,the values of joint roughness coefficient(JRC) were calculated based on the above parameters.It could access to the joint surface rock sample morphology of the main parameters of characteristic.The maximum peak height is 2.692 mm in the test joint plane.The maximum profile height is 4.408 mm.JRC value is 6.38 by fractal dimension computing.It belongs to the smooth joint surface.The results show that it is a kind of the effective method to quantitatively evaluate the surface topography by the three-dimensional laser surface topography instrument and the fractal dimension method.According to the results,during the process of underground large-scale mining,safe measures to prevent slip failure of the joint plane by controlling surface tension and shear mechanical response were proposed. 展开更多
关键词 joint surface morphology characteristic fi'actal dimension joint roughness coefficient
下载PDF
Measurement of Joint Roughness Coefficient by Using Profilograph and Roughness Ruler 被引量:19
13
作者 杜时贵 胡云进 胡晓飞 《Journal of Earth Science》 SCIE CAS CSCD 2009年第5期890-896,共7页
Joint roughness coefficient(JRC) is the key parameter for the empirical estimation of joint shear strength by using the JRC-JCS(joint wall compressive strength) model.Because JRC has such characteristics as nonuni... Joint roughness coefficient(JRC) is the key parameter for the empirical estimation of joint shear strength by using the JRC-JCS(joint wall compressive strength) model.Because JRC has such characteristics as nonuniformity,anisotropy,and unhomogeneity,directional statistical measurement of JRC is the precondition for ensuring the reliability of the empirical estimation method.However,the directional statistical measurement of JRC is time-consuming.In order to present an ideal measurement method of JRC,new profilographs and roughness rulers were developed according to the properties of rock joint undulating shape based on the review of measurement methods of JRC.Operation methods of the profilographs and roughness rulers were also introduced.A case study shows that the instruments and operation methods produce an effective means for the statistical measurement of JRC. 展开更多
关键词 joint roughness coefficient profilograph roughness ruler empirical estimation direc-tional statistical measurement.
原文传递
Probabilistic prediction on three-dimensional roughness of discontinuity based on two-dimensional traces under rock tunnel excavation based on Bayesian theory
14
作者 Qi Zhang Yuechao Pei +2 位作者 Xiaojun Wang Xiaojun Li Yixin Shen 《Underground Space》 SCIE EI CSCD 2024年第1期338-356,共19页
Three-dimensional(3D)roughness of discontinuity affects the quality of the rock mass,but 3D roughness is hard to be measured due to that the discontinuity is invisible in the engineering.Two-dimensional(2D)roughness c... Three-dimensional(3D)roughness of discontinuity affects the quality of the rock mass,but 3D roughness is hard to be measured due to that the discontinuity is invisible in the engineering.Two-dimensional(2D)roughness can be calculated from the visible traces,but it is difficult to obtain enough quantity of the traces to directly derive 3D roughness during the tunnel excavation.In this study,a new method using Bayesian theory is proposed to derive 3D roughness from the low quantity of 2D roughness samples.For more accurately calculating 3D roughness,a new regression formula of 2D roughness is established firstly based on wavelet analysis.The new JRC3D prediction model based on Bayesian theory is then developed,and Markov chain Monte Carlo(MCMC)sampling is adopted to process JRC3D prediction model.The discontinuity sample collected from the literature is used to verify the proposed method.Twenty groups with the sampling size of 2,3,4,and 5 of each group are randomly sampled from JRC2D values of 170 profiles of the discontinuity,respectively.The research results indicate that 100%,90%,85%,and 60%predicting JRC3D of the sample groups corresponding to the sampling size of 5,4,3,and 2 fall into the tolerance interval[JRC_(true)–1,JRC_(true)+1].It is validated that the sampling size of 5 is enough for predicting JRC3D.The sensitivities of sampling results are then analyzed on the influencing factors,which are the correlation function,the prior distribution,and the prior information.The discontinuity across the excavation face at ZK78+67.5 of Daxiagu tunnel is taken as the tunnel engineering application,and the results further verify that the predicting JRC3D with the sampling size of 5 is generally in good agreement with JRC3D true values. 展开更多
关键词 Rock discontinuity Joint roughness coefficient Tunnel excavation Bayesian theory Markov chain Monte Carlo sampling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部