Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This...Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This paper presents a new type of assembled connection joint for the high-rise modularized construction. Cyclic shear tests of full-scale joints were carried out, and the key indexes of their seismic performances including the hysteretic performance, ductility, and energy dissipation capacity were analyzed and obtained. The results show that the hysteresis loops of longitudinal and lateral cyclic shear tests were both plump in shapes. The ductility coefficients were 4.54 and 4.98, and the energy dissipation coefficients were 1.83 and 1.43, respectively. The test joint had good ductility and energy dissipation capacity. The positions of yield failure of specimens were mainly concentrated in the connection areas between the column and short beam or end-plate. The research can provide the technical reference for the seismic design and engineering application of related modularized constructions.展开更多
To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted ...To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame(CSF) distributes uniformly; and each high-strength bolt(HSB)primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly; and the HSBs at both ends of the CSF transfer the maximum shear forces.展开更多
This paper studies the distributed Nash equilibrium seeking(DNES)problem for games whose action sets are compact and whose network graph is switching satisfying the jointly strongly connected condition.To keep the act...This paper studies the distributed Nash equilibrium seeking(DNES)problem for games whose action sets are compact and whose network graph is switching satisfying the jointly strongly connected condition.To keep the actions of all players in their action sets all the time,one has to resort to the projected gradient-based method.Under the assumption that the unique Nash equilibrium is the unique equilibrium of the pseudogradient system,an algorithm is proposed that is able to exponentially find the Nash equilibrium.Further,the authors also consider the distributed Nash equilibrium seeking problem for games whose actions are governed by high-order integrator dynamics and belong to some compact sets.Two examples are used to illustrate the proposed approach.展开更多
Seismic responses of utility tunnel-soil system were studied via shaking table model tests with considerations of two kinds of double box utility tunnels:with and without joint connections.These two testing utility tu...Seismic responses of utility tunnel-soil system were studied via shaking table model tests with considerations of two kinds of double box utility tunnels:with and without joint connections.These two testing utility tunnel models were made of galvanized iron wire and micro-concrete,and the ground was simulated by the dry standard sand through layered tamping treatment.The utility tunnel-soil system was subjected to horizontal vibration in uniaxial direction perpendicular to the longitudinal direction of tunnel model.Via instrumentations of earth pressure gauges,accelerometers and strain gauges,the earth pressure response,acceleration response and bending moment response were measured.The testing results show that the joint connections in the utility tunnel along the longitudinal direction play an important role in determining the characteristic of earth pressure response and bending moment response,whereas the effect of joint connections on acceleration response is less significant.In addition,the partition wall exhibits the consistent acceleration response with the side-wall of double box utility tunnel model under seismic condition.Based on the testing results,it is suggested that the joint connection should be taken reasonably into consideration during design and construction for engineering practice.展开更多
Purpose–The purpose of this paper is to investigate the time-varying finite-time formation tracking control problem for multiple unmanned aerial vehicle systems under switching topologies,where the states of the unma...Purpose–The purpose of this paper is to investigate the time-varying finite-time formation tracking control problem for multiple unmanned aerial vehicle systems under switching topologies,where the states of the unmanned aerial vehicles need to form desired time-varying formations while tracking the trajectory of the virtual leader in finite time under jointly connected topologies.Design/methodology/approach–A consensus-based formation control protocol is constructed to achieve the desired formation.In this paper,the time-varying formation is specified by a piecewise continuously differentiable vector,while the finite-time convergence is guaranteed by utilizing a non-linear function.Based on the graph theory,the finite-time stability of the close-loop system with the proposed control protocol under jointly connected topologies is proven by applying LaSalle’s invariance principle and the theory of homogeneity with dilation.Findings–The effectiveness of the proposed protocol is verified by numerical simulations.Consequently,the proposed protocol can successfully achieve the predefined time-varying formation in finite time under jointly connected topologies while tracking the trajectory generated by the leader.Originality/value–This paper proposes a solution to simultaneously solve the control problems of time-varying formation tracking,finite-time convergence,and switching topologies.展开更多
Leung Chun-ying(fifth right),Chief Executive of Hong Kong Special Administrative Region,and Hong Kong Exchanges and Clearing Chairman Chow Chung-kong(fourth left)jointly beat a gong to mark the inauguration of the...Leung Chun-ying(fifth right),Chief Executive of Hong Kong Special Administrative Region,and Hong Kong Exchanges and Clearing Chairman Chow Chung-kong(fourth left)jointly beat a gong to mark the inauguration of the Shenzhen-Hong Kong Stock Connect in Hong Kong on December 5. Under the new scheme, mainland investors can trade shares on the stock exchange of Hong Kong through local brokers, and Hong Kong investors can buy and sell stocks on the tech-heavy Shenzhen bourse. The arrangement is the second link between mainland and Hong Kong capital markets, after the Shanghai-Hong Kong Stock Connect was launched in 2014.展开更多
基金Sponsored by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2019MEE047)the National Key Research and Development Project of China (Grant No. 2020YFB1901403)CSCEC Technical and Development Plan (Grant No. CSCEC-2020-Z-35)。
文摘Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This paper presents a new type of assembled connection joint for the high-rise modularized construction. Cyclic shear tests of full-scale joints were carried out, and the key indexes of their seismic performances including the hysteretic performance, ductility, and energy dissipation capacity were analyzed and obtained. The results show that the hysteresis loops of longitudinal and lateral cyclic shear tests were both plump in shapes. The ductility coefficients were 4.54 and 4.98, and the energy dissipation coefficients were 1.83 and 1.43, respectively. The test joint had good ductility and energy dissipation capacity. The positions of yield failure of specimens were mainly concentrated in the connection areas between the column and short beam or end-plate. The research can provide the technical reference for the seismic design and engineering application of related modularized constructions.
基金Project(51078077)supported by the National Natural Science Foundation of China
文摘To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame(CSF) distributes uniformly; and each high-strength bolt(HSB)primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly; and the HSBs at both ends of the CSF transfer the maximum shear forces.
基金supported in part by the Research Grants Council of the Hong Kong Special Administration Region under Grant No.14202619in part by the National Natural Science Foundation of China under Grant No.61973260。
文摘This paper studies the distributed Nash equilibrium seeking(DNES)problem for games whose action sets are compact and whose network graph is switching satisfying the jointly strongly connected condition.To keep the actions of all players in their action sets all the time,one has to resort to the projected gradient-based method.Under the assumption that the unique Nash equilibrium is the unique equilibrium of the pseudogradient system,an algorithm is proposed that is able to exponentially find the Nash equilibrium.Further,the authors also consider the distributed Nash equilibrium seeking problem for games whose actions are governed by high-order integrator dynamics and belong to some compact sets.Two examples are used to illustrate the proposed approach.
基金supported by Natural Science Foundation of China(Grant Nos.52078086 and 51778092)Innovation Group Science Foundation of the Natural Science Foundation of Chongqing,China(Grant No.cstc2020jcyj-cxttX0003)State Education Ministry and the Fundamental Research Funds for the Central Universities(2019CDJSK04XK23).
文摘Seismic responses of utility tunnel-soil system were studied via shaking table model tests with considerations of two kinds of double box utility tunnels:with and without joint connections.These two testing utility tunnel models were made of galvanized iron wire and micro-concrete,and the ground was simulated by the dry standard sand through layered tamping treatment.The utility tunnel-soil system was subjected to horizontal vibration in uniaxial direction perpendicular to the longitudinal direction of tunnel model.Via instrumentations of earth pressure gauges,accelerometers and strain gauges,the earth pressure response,acceleration response and bending moment response were measured.The testing results show that the joint connections in the utility tunnel along the longitudinal direction play an important role in determining the characteristic of earth pressure response and bending moment response,whereas the effect of joint connections on acceleration response is less significant.In addition,the partition wall exhibits the consistent acceleration response with the side-wall of double box utility tunnel model under seismic condition.Based on the testing results,it is suggested that the joint connection should be taken reasonably into consideration during design and construction for engineering practice.
基金This work is supported by NNSFC Nos 61603383 and CXJJ-16Z212.
文摘Purpose–The purpose of this paper is to investigate the time-varying finite-time formation tracking control problem for multiple unmanned aerial vehicle systems under switching topologies,where the states of the unmanned aerial vehicles need to form desired time-varying formations while tracking the trajectory of the virtual leader in finite time under jointly connected topologies.Design/methodology/approach–A consensus-based formation control protocol is constructed to achieve the desired formation.In this paper,the time-varying formation is specified by a piecewise continuously differentiable vector,while the finite-time convergence is guaranteed by utilizing a non-linear function.Based on the graph theory,the finite-time stability of the close-loop system with the proposed control protocol under jointly connected topologies is proven by applying LaSalle’s invariance principle and the theory of homogeneity with dilation.Findings–The effectiveness of the proposed protocol is verified by numerical simulations.Consequently,the proposed protocol can successfully achieve the predefined time-varying formation in finite time under jointly connected topologies while tracking the trajectory generated by the leader.Originality/value–This paper proposes a solution to simultaneously solve the control problems of time-varying formation tracking,finite-time convergence,and switching topologies.
文摘Leung Chun-ying(fifth right),Chief Executive of Hong Kong Special Administrative Region,and Hong Kong Exchanges and Clearing Chairman Chow Chung-kong(fourth left)jointly beat a gong to mark the inauguration of the Shenzhen-Hong Kong Stock Connect in Hong Kong on December 5. Under the new scheme, mainland investors can trade shares on the stock exchange of Hong Kong through local brokers, and Hong Kong investors can buy and sell stocks on the tech-heavy Shenzhen bourse. The arrangement is the second link between mainland and Hong Kong capital markets, after the Shanghai-Hong Kong Stock Connect was launched in 2014.