针对RRT(rapidly-exploring random tree)路径规划算法在高维空间的机械臂避障路径规划时随机产生巨量节点,导致算法运行负担大、避障性能差、容易陷入局部极值的问题,提出一种结合A^(*)判断函数的改进RRT算法。对RRT的采样方式进行更改...针对RRT(rapidly-exploring random tree)路径规划算法在高维空间的机械臂避障路径规划时随机产生巨量节点,导致算法运行负担大、避障性能差、容易陷入局部极值的问题,提出一种结合A^(*)判断函数的改进RRT算法。对RRT的采样方式进行更改,每次生成一个包含多个随机采样点的序列,并利用改进的A^(*)判断函数进行排序;对每次生成节点进行距离判断,防止陷入局部搜索;利用重复贪心策略删除冗余节点,利用三次B样条平滑路径。在二维、三维地图及机械臂仿真与样机实验中进行算法性能分析,改进RRT算法能够大量减少到达目标位姿时产生的节点,缓解了局部极值,快速稳定地避开障碍物并到达目标位姿,证明了改进RRT算法的有效性和优越性。展开更多
文摘针对RRT(rapidly-exploring random tree)路径规划算法在高维空间的机械臂避障路径规划时随机产生巨量节点,导致算法运行负担大、避障性能差、容易陷入局部极值的问题,提出一种结合A^(*)判断函数的改进RRT算法。对RRT的采样方式进行更改,每次生成一个包含多个随机采样点的序列,并利用改进的A^(*)判断函数进行排序;对每次生成节点进行距离判断,防止陷入局部搜索;利用重复贪心策略删除冗余节点,利用三次B样条平滑路径。在二维、三维地图及机械臂仿真与样机实验中进行算法性能分析,改进RRT算法能够大量减少到达目标位姿时产生的节点,缓解了局部极值,快速稳定地避开障碍物并到达目标位姿,证明了改进RRT算法的有效性和优越性。