Based on the general conservation laws in continuum mechanics, the Eulerian and Lagrangian descriptions of the jump conditions of shock waves in 3-dimensional solids were presented respectively. The implication of the...Based on the general conservation laws in continuum mechanics, the Eulerian and Lagrangian descriptions of the jump conditions of shock waves in 3-dimensional solids were presented respectively. The implication of the jump conditions and their relations between each other, particularly the relation between the mass conservation and the displacement continuity, were discussed. Meanwhile the shock wave response curves in 3- dimensional solids, i.e. the Hugoniot curves were analysed, which provide the foundation for studying the coupling effects of shock waves in 3-dimensional solids.展开更多
Acoustic Doppler current profiles and water density profiles were measured over the 280 m deep continental slope of the Gulf of California to elucidate the bathymetric effect on zooplankton distribution. These measure...Acoustic Doppler current profiles and water density profiles were measured over the 280 m deep continental slope of the Gulf of California to elucidate the bathymetric effect on zooplankton distribution. These measurements were combined with water velocity and density simulations from the Regional Ocean Model System with and without the influence of Coriolis acceleration. The data revealed an acceleration of the near-bottom flow as it moved toward increasing depths. This acceleration was produced by the adjustment of the isopycnals to bathymetry (hydraulic jump). Zooplankton patches moved downward at the continental slope and then upward, thus exhibiting wave patterns. Model outputs without the effect of Coriolis acceleration also suggested that vertical zooplankton concentration followed a wave pattern. However, when Coriolis acceleration was added to the momentum equation, the horizontal zooplankton distribution was enhanced, which reduced the vertical zooplankton concentration observed over irregular bathymetries. Coriolis acceleration was responsible for horizontal dispersal of up to 20% of the total zooplankton concentration located over the wave trough.展开更多
It is accepted that quantum mechanics (QM) describes motion of waves and particles. Therefore, we must use wave-particle duality (WPD), which is usually considered as one of the foundations of QM;however, WPD is well ...It is accepted that quantum mechanics (QM) describes motion of waves and particles. Therefore, we must use wave-particle duality (WPD), which is usually considered as one of the foundations of QM;however, WPD is well known as a self-contradictory concept. These contradictions insensibly spoil our subconscious thinking about the micro-world (MW). This article shows that known trials to solve these contradictions are erroneous. Quantum jumps (QJs) are shown to be very lame arguments for the real existence of particles. I offer rejecting the concept of particles and using their names as labels for types of corresponding waves. Thus, we can discard contradictions created by WPD. This approach is validated in the article by careful analysis of real calculation methods of quantum electrodynamics (QED). For the first time, it is noticed that proper 4-coordinates of particles are not in use in real calculations in QED. This implies that particles do not take part in real calculations, which describe properties of atoms and molecules. It follows that particles do not exist as such. Therefore, we must acknowledge that we actually use the names of “particles” merely as names of types of given waves, but not as real, physical objects.展开更多
基于水波扩散效应,提出了一种水波中心扩散算法(water wave center diffusion,WWCD)。着眼解决函数极值优化问题,以某个局部最优解为中心点,由近至远、由密至疏产生多组扩散解进行迭代寻优。通过合理设计扩散解的扩散比例、选择比例和...基于水波扩散效应,提出了一种水波中心扩散算法(water wave center diffusion,WWCD)。着眼解决函数极值优化问题,以某个局部最优解为中心点,由近至远、由密至疏产生多组扩散解进行迭代寻优。通过合理设计扩散解的扩散比例、选择比例和跳跃比例等参数,提高算法的全局寻优效率,对比WWCD与6种智能优化算法极值优化问题的仿真结果,验证了前者在全局求解精度和收敛速度方面的优越性。聚焦雷达信号识别问题,WWCD优化支持向量机(support vector machine,SVM)关键参数进行雷达信号识别实验。仿真结果表明,通过本算法优化SVM关键参数进行雷达信号识别,可明显提高识别效率。展开更多
基金Project supported by the National Natural Science Foundation of China (No.10272097) and the Foundation of National Key Laboratory of Ballistics (No.51453040101zk0103)
文摘Based on the general conservation laws in continuum mechanics, the Eulerian and Lagrangian descriptions of the jump conditions of shock waves in 3-dimensional solids were presented respectively. The implication of the jump conditions and their relations between each other, particularly the relation between the mass conservation and the displacement continuity, were discussed. Meanwhile the shock wave response curves in 3- dimensional solids, i.e. the Hugoniot curves were analysed, which provide the foundation for studying the coupling effects of shock waves in 3-dimensional solids.
文摘Acoustic Doppler current profiles and water density profiles were measured over the 280 m deep continental slope of the Gulf of California to elucidate the bathymetric effect on zooplankton distribution. These measurements were combined with water velocity and density simulations from the Regional Ocean Model System with and without the influence of Coriolis acceleration. The data revealed an acceleration of the near-bottom flow as it moved toward increasing depths. This acceleration was produced by the adjustment of the isopycnals to bathymetry (hydraulic jump). Zooplankton patches moved downward at the continental slope and then upward, thus exhibiting wave patterns. Model outputs without the effect of Coriolis acceleration also suggested that vertical zooplankton concentration followed a wave pattern. However, when Coriolis acceleration was added to the momentum equation, the horizontal zooplankton distribution was enhanced, which reduced the vertical zooplankton concentration observed over irregular bathymetries. Coriolis acceleration was responsible for horizontal dispersal of up to 20% of the total zooplankton concentration located over the wave trough.
文摘It is accepted that quantum mechanics (QM) describes motion of waves and particles. Therefore, we must use wave-particle duality (WPD), which is usually considered as one of the foundations of QM;however, WPD is well known as a self-contradictory concept. These contradictions insensibly spoil our subconscious thinking about the micro-world (MW). This article shows that known trials to solve these contradictions are erroneous. Quantum jumps (QJs) are shown to be very lame arguments for the real existence of particles. I offer rejecting the concept of particles and using their names as labels for types of corresponding waves. Thus, we can discard contradictions created by WPD. This approach is validated in the article by careful analysis of real calculation methods of quantum electrodynamics (QED). For the first time, it is noticed that proper 4-coordinates of particles are not in use in real calculations in QED. This implies that particles do not take part in real calculations, which describe properties of atoms and molecules. It follows that particles do not exist as such. Therefore, we must acknowledge that we actually use the names of “particles” merely as names of types of given waves, but not as real, physical objects.