This paper proposes a thermal analytical model of current gain for bipolar junction transistor-bipolar static induction transistor (BJT-BSIT) compound device in the low current operation. It also proposes a best the...This paper proposes a thermal analytical model of current gain for bipolar junction transistor-bipolar static induction transistor (BJT-BSIT) compound device in the low current operation. It also proposes a best thermal compensating factor to the compound device that indicates the relationship between the thermal variation rate of current gain and device structure. This is important for the design of compound device to be optimized. Finally, the analytical model is found to be in good agreement with numerical simulation and experimental results. The test results demonstrate that thermal variation rate of current gain is below 10% in 25 ℃-85 ℃ and 20% in -55 ℃-25 ℃.展开更多
There have been investigated reactive properties of silicon avalanche photodiodes (MAPD---micropixel avalanche photodiode) with deeply buried micropixels (amplification channels) within AC signal frequencies f = 5...There have been investigated reactive properties of silicon avalanche photodiodes (MAPD---micropixel avalanche photodiode) with deeply buried micropixels (amplification channels) within AC signal frequencies f = 50-500 kHz. By experiment it is found out that measured capacitance of structures involving three p-n junctions in section passing through the pixels increases exponentially with Ufor (negative potential is applying to n-Si substrate) reaches maximum and at certain value Ufor = Uinv changes the sign becoming the negative capacitance (equivalent inductance). The magnitude of active component of complete conduction G grows with the applied voltage and reaches maximum value -70 mS at Ufor = 1.0 V (f = 500 kHz). There has been calculated difference in phase tp appearing between current and voltage and it is shown that at Ufor = 0 V the q = 80 and passes through the zero at Ufor = 0.55 V. The magnitude of negative capacitance recalculated to the inductance value with the growth of forward bias being decreased sharply tends to the saturation.展开更多
文摘This paper proposes a thermal analytical model of current gain for bipolar junction transistor-bipolar static induction transistor (BJT-BSIT) compound device in the low current operation. It also proposes a best thermal compensating factor to the compound device that indicates the relationship between the thermal variation rate of current gain and device structure. This is important for the design of compound device to be optimized. Finally, the analytical model is found to be in good agreement with numerical simulation and experimental results. The test results demonstrate that thermal variation rate of current gain is below 10% in 25 ℃-85 ℃ and 20% in -55 ℃-25 ℃.
文摘There have been investigated reactive properties of silicon avalanche photodiodes (MAPD---micropixel avalanche photodiode) with deeply buried micropixels (amplification channels) within AC signal frequencies f = 50-500 kHz. By experiment it is found out that measured capacitance of structures involving three p-n junctions in section passing through the pixels increases exponentially with Ufor (negative potential is applying to n-Si substrate) reaches maximum and at certain value Ufor = Uinv changes the sign becoming the negative capacitance (equivalent inductance). The magnitude of active component of complete conduction G grows with the applied voltage and reaches maximum value -70 mS at Ufor = 1.0 V (f = 500 kHz). There has been calculated difference in phase tp appearing between current and voltage and it is shown that at Ufor = 0 V the q = 80 and passes through the zero at Ufor = 0.55 V. The magnitude of negative capacitance recalculated to the inductance value with the growth of forward bias being decreased sharply tends to the saturation.