To improve the brittleness characteristics of magnesium phosphate cement-based materials(MPC)and to promote its promotion and application in the field of structural reinforcement and repair,this study aimed to increas...To improve the brittleness characteristics of magnesium phosphate cement-based materials(MPC)and to promote its promotion and application in the field of structural reinforcement and repair,this study aimed to increase the toughness of MPC by adding jute fiber,explore the effects of different amounts of jute fiber on the working and mechanical properties of MPC,and prepare jute fiber reinforced magnesium phosphate cement-based materials(JFRMPC)to reinforce damaged beams.The improvement effect of beam performance before and after reinforcement was compared,and the strengthening and toughening mechanisms of jute fiber on MPC were explored through microscopic analysis.The experimental results show that,as the content of jute fiber(JF)increases,the fluidity and setting time of MPC decrease continuously;When the content of jute fiber is 0.8%,the compressive strength,flexural strength,and bonding strength of MPC at 28 days reach their maximum values,which are increased by 18.0%,20.5%,and 22.6%compared to those of M0,respectively.The beam strengthened with JFRMPC can withstand greater deformation,with a deflection of 2.3 times that of the unreinforced beam at failure.The strain of the steel bar is greatly reduced,and the initial crack and failure loads of the reinforced beam are increased by 192.1%and 16.1%,respectively,compared to those of the unreinforced beam.The JF added to the MPC matrix dissipates energy through tensile fracture and debonding pull-out,slowing down stress concentration and inhibiting the free development of cracks in the matrix,enabling JFRMPC to exhibit higher strength and better toughness.The JF does not cause the hydration of MPC to generate new compounds but reduces the amount of hydration products generated.展开更多
Micaceous soils are common in many tropical countries and regions,and in some locations with moderate climate.The soils are spongy and unstable when loaded and are not considered suitable as construction material in e...Micaceous soils are common in many tropical countries and regions,and in some locations with moderate climate.The soils are spongy and unstable when loaded and are not considered suitable as construction material in earth structures.To resolve the issue,this work examined performance of micaceous soil reinforced with a combination of jute fibers,hydrated lime or slag-lime.A total of 28 sample sets were prepared at various dosages.Unconfined compression tests were conducted on the samples cured for 7 d and 28 d,respectively.The test results suggested that the unconfined compressive strength(UCS)and material stiffness were increased with the inclusion of up to 1%fiber and decreased if additional fibers were used.The ductility was improved consistently with up to 1.5%fiber content.The inclusions of fibers combined with hydrated lime or slag-lime further enhanced strength and stiffness of micaceous soil,and the improvement depended on the dosages used.For the dosages examined,jute fibers outweighed lime and slag in gaining ductility,and the optimal fiber content was 1%where strength and ductility were considered.展开更多
Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber.The tests have been conducted t...Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber.The tests have been conducted to analyze the liquid plastic limit,the particle distribution and the free expansion rate.The results show that:(1)With an increase in the cement-jute fiber content,the free expansion rate of the modified expansive soil gradually decreases,however,such a rate rebounds when the fiber content exceeds 0.5%and the cement content exceeds 6%.(2)With an increase in the cement percentage,the particle unevenness coefficient(Cu)and curvature coefficient(Cc)of the modified expansive soil tend to grow gradually.The Cc coefficient reaches 1.0 when the cement content is 6%.The unevenness coefficient of 16 soil samples is greater than 5.0,however,the Cu coefficient decreases when the cement content reaches 6%.(3)The plastic limit of soil increases as the cement content is made higher,while the liquid limit and plastic index decrease gradually.When the content of the modified material is 2%+0.1%~2%+0.7%(Cement content+jute fiber content),the change of particle size distribution is most obvious.(4)When the contents of cement and jute fiber are is 6%and 0.5%,respectively,the modification induced in the physical properties of soil samples corresponds to the best case.展开更多
Jute is generally not dyed with reactive dye though it is a cellulosic fiber. Reactive dye is extensively used to dye cotton, viscose and other cellulosic fibers whereas jute is dyed with basic dye. This paper present...Jute is generally not dyed with reactive dye though it is a cellulosic fiber. Reactive dye is extensively used to dye cotton, viscose and other cellulosic fibers whereas jute is dyed with basic dye. This paper presents a novel approach to dye the jute fiber with reactive dye after treating with chitosan. Jute fabric was treated with chitosan solution at different con- centrations (0.5%, 1%, 2%, 3% and 4%) and then dyed with reactive dye. The depth and fastness of shade of dyed fabric were analyzed by comparing the chitosan treated samples with untreated dyed fabric samples. It has been found that, the dyebath exhaustion is increased with the increment of chitosan concentrations. The exhaustion percentages have found 36.79%, 41.59%, 48.33%, 54.46% and 58.75% for the fabric treated with 0.5%, 1%, 2%, 3% and 4% chitosan solution respectively, while the exhaustion of dyebath is only 23.15% for untreated fabric. The K/S values (at λmax = 540 nm) of dyed samples have found 4.93, 6.77, 10.5, 14.07, 15.57 and 2.37 for 0.5%, 1%, 2%, 3%, 4% and untreated fabric respectively. The color fastness to washing and rubbing of the dyed fabrics was also evaluated. In case of dry rubbing, both types of fabric have shown almost similar fastness ratings. However, chitosan treated fabrics have shown inferior fastness rating in case of wet rubbing and washing, particularly for the fabrics at higher chitosan concentrations.展开更多
Jute fiber (woven fabric, 1 × 1 plain weave) reinforced polypropylene matrix composites were prepared by compression molding with various fiber loading such as 30%, 40%, 46%, 50%, 55% by weight. The mechanical pr...Jute fiber (woven fabric, 1 × 1 plain weave) reinforced polypropylene matrix composites were prepared by compression molding with various fiber loading such as 30%, 40%, 46%, 50%, 55% by weight. The mechanical properties such as tensile strength (TS), bending strength (BS), tensile modulus (TM), bending modulus (BM) and impact strength (IS) of the composite were assessed and analyzed. The highest value of TS, BS, TM, BM and IS were 68.1 MPa, 94.1 MPa, 2936 MPa, 4831 MPa and 14.5 kJ/m2 respectively with 50% fiber loading by weight. It was found that the mechanical properties of the composites were increased with the increase in jute fiber content up to 50% by weight;however, further increase in fiber loading the value decreased. On the basis of fiber content, 50% fiber reinforced composites had the optimum set of mechanical properties. Initially the water absorption rate was higher and then it became slower and static with time. Chemical ageing test with various chemical media such as H2O2, NaOH, HCl and NaCl were performed up to 168 hours. After first 24 hours the composite samples showed gradual weight gain (%) and then the weight gain was become slow and steady in the chemical solution.展开更多
Impregnation rate of thermoplastic resin(polypropylene)in jute fiber mat and influence of relative factors on impregnation were studied,aiming to develop the continuous melt impregnation technique and to investigate t...Impregnation rate of thermoplastic resin(polypropylene)in jute fiber mat and influence of relative factors on impregnation were studied,aiming to develop the continuous melt impregnation technique and to investigate the effect of impregnation rate and temperature on processing conditions and mechanical properties of natural fiber mat-reinforced thermoplastics.Influence of pressure on porosity of fiber mat and effect of melt viscosity on impregnation rate were also investigated.The modified capillary rheometer was used as apparatus and experimental data were analyzed based on the one-dimension Darcy’s law.Results showed that at a given pressure,the impregnation rate is inversely proportional to melt viscosity and jute fiber mat has higher porosity than glass fiber mat.The architecture,compressibility,permeability and fiber diameter of jute fiber mat were compared with those of glass fiber mat and their effects on impregnation were discussed further.It could be seen that the average diameter of jute fiber is much bigger;the porosity of jute fiber mat is significantly higher and inner bundle impregnation does not exist in jute fiber mat.Therefore,it is not difficult to understand why the impregnation rate in jute fiber mat is 3.5 times higher and permeability is 14 times greater.Kozeny constants of jute and glass fiber mats calculated based on the capillary model are 2950 and 442,respectively.展开更多
Hybrid materials of any class are essential for current demands. This paper deals with the hybrid effect of composites made of jute/E-Glass fibers which are fabricated by hand layup method using LY556 Epoxy resin and ...Hybrid materials of any class are essential for current demands. This paper deals with the hybrid effect of composites made of jute/E-Glass fibers which are fabricated by hand layup method using LY556 Epoxy resin and HY951 hardener. The properties of this hybrid composite are determined by testing like tensile, flexural, impact, and inter laminar shear strength which are evaluated experimentally according to ASTM standards. The result of the test shows that hybrid composite of jute/ E-glass fiber has far better properties than that of jute fiber composite. However, it is found that the hybrid composite has better strength as compared to jute fiber composite fabricated separately with glass fiber.展开更多
Cellulose nanofibrils(CNFs) are a type of natural nanomaterials extracted from plants and animals that have expanding applications in numerous areas benefiting from their inherent properties of renewability,biodegrada...Cellulose nanofibrils(CNFs) are a type of natural nanomaterials extracted from plants and animals that have expanding applications in numerous areas benefiting from their inherent properties of renewability,biodegradability,and sustainability.For energy consumption reduction,CNFs were extracted from raw jute fibers,which were not pretreated in a hot alkali or acid solution,by TEMPOmediated oxidation.Synchrotron radiation wide-angle scattering was performed to realize the crystallization of the CNF crystallites;Fourier transform infrared spectroscopy,transmission electron microscopy,and fieldemission scanning electron microscopy were used to characterize the changes in chemical groups and visualized morphology of CNFs.The simplified preparation and shortened cycle should further help the study of the structure–function relationship of jute CNFs subjected to chemical modification.展开更多
Short jute fiber (2 - 3 mm) reinforced polypropylene PP-based composites (20% fiber by weight) were fabricated using compression molding and the mechanical properties were evaluated. Tensile strength (TS), tensile mod...Short jute fiber (2 - 3 mm) reinforced polypropylene PP-based composites (20% fiber by weight) were fabricated using compression molding and the mechanical properties were evaluated. Tensile strength (TS), tensile modulus (TM), elongation at break (Eb%), flexural strength (FS), flexural modulus (FM), impact strength (IS), and hardness of the composites were found to be 32 MPa, 850 MPa, 12%, 38 MPa, 1685 MPa, 18 kJ/m2 and 96 shore-A, respectively. Then short E-glass fiber (2 - 3 mm) reinforced PP-based composites (20% fiber by weight) were fabricated and mechanical properties were compared with short jute-based composites. Short jute-based composites showed excellent mechanical properties and comparable to short E-glass-based composites. Soil degradation test of both types of composites indi-cated that jute/PP composites significantly lost much of its mechanical properties but E-glass/PP composites retained major portion of its original integrity. Interfaces of the degraded composites were investigated by scanning electron microscopy and supported the biodegradation properties of jute/PP composites.展开更多
In this study, jute woven fabrics (1 × 1 plain, twill, zigzag and diamond weave) were manufactured from 100% raw jute yarn. The fabric specimens were treated by 5%, 10%, 15%, 20% and 25% unsaturated polyester res...In this study, jute woven fabrics (1 × 1 plain, twill, zigzag and diamond weave) were manufactured from 100% raw jute yarn. The fabric specimens were treated by 5%, 10%, 15%, 20% and 25% unsaturated polyester resin where styrene monomer used as a solvent and 1% methyl ethyl ketone peroxide (MEKP) was used as initiator. Two bar pressure was applied for complete wetting of the fabric by a Padder and curing was done at 130?C for 10 minutes. The physico-mechanical characteristics of untreated and treated samples were examined and evaluated. It was revealed that moisture content (MC) and water absorbency of the treated specimens were decreased with the increase of resin percentage (%) in the fabrics. MC and water absorbency were maximum decreased up to 50.23% and 60.14% respectively by 25% resin treatment. On the other hand, bending length (BL), flexural rigidity (FR), flexural modulus (FM) and tensile strength (TS) were enhanced with the increase of resin percentage in the fabrics which resulted higher fabric stiffness. The maximum improvement of BL, FR, FM and TS were found to be 6.67%, 56.04%, 10.57% and 18.75% respectively in comparison to untreated sample. Soil degradation tests exhibited that 33.59% TS loss occurred for untreated specimens where only 8.04% loss of TS found for 25% resin treated one. Furthermore, jute based twill, zigzag and diamond fabrics were also treated by 10%, 15%, 20% and 25% resin, then measured their TS and compared with plain fabrics. It was revealed that plain fabrics have superior TS over other fabrics. It was also evident that TS enhanced for all the fabrics after resin treatment and maximum increase found for all the fabrics up to 25% resin treatment.展开更多
Biopolymers have become popular in geotechnical engineering as they provide a carbon-neutral alternative for soil solidification.Xanthan gum(XG)and jute fiber(JF)were selected to solidify the Yellow River dredged soil...Biopolymers have become popular in geotechnical engineering as they provide a carbon-neutral alternative for soil solidification.Xanthan gum(XG)and jute fiber(JF)were selected to solidify the Yellow River dredged soil.The mechanical behavior of solidified dredged soil(SDS)was investigated using a series of uniaxial compression and splitting tension tests at different XG and JF contents and fiber lengths.The results indicate that on the 28th day,the unconfined compressive strength(UCS)values of SDS samples reached 2.83 MPa and splitting tensile strength(STS)of 0.763 MPa at an XG content of 1.5%.When the JF content was greater than 0.9%,the STS of the SDS samples decreased.This is because that the large fiber content weakened the cementation ability of XG.The addition of JF can significantly increase the strain at peak strength of SDS samples.There is a linear relationship between the UCS and STS of the dredged soils solidified by XG and JF.Microanalysis shows that the strength of SDS samples was improved mainly via the cementation of XG itself and the network structure formed by JF with soil particles.The dredged soil reinforced by XG and JF shows better mechanical performance and has great potential for application.展开更多
Jute is a natural fiber widely used as reinforcement in composites due to its high tensile strength and stiffness,but they can easily absorb water and have their physical properties compromised.The water absorption pr...Jute is a natural fiber widely used as reinforcement in composites due to its high tensile strength and stiffness,but they can easily absorb water and have their physical properties compromised.The water absorption properties of jute/polyester composites are evaluated according to ASTM D 570 and the effect of humidity in the composite mechanical behavior is also analyzed.The composite showed a pseudo-Fickian behavior and gained 13.37%in weight after the test.It also lost tensile strength and elasticity modulus,and increased its specific deformation.Scanning electron microscope images showed that wet specimens were more subject to cracks,voids and fiber pullout than dry specimens.Failures produced by water diffusion in composite and polymer plasticization,added to breakdown in the fibers’cellulosic structures,justify the change in mechanical properties due to water absorption.展开更多
Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doo...Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doors of analysis and simulation of composite materials under various environment.Modelling and simulation using various available softwares saves a lot of time and resources. In the present work, an attempt has been made to analyze the tensile behavior of jute fiber reinforced epoxy based polymer composite materials using the student version of commercially available finite element code Siemens PLM NX 10.0. In most of the structural applications, materials are required to have enough stiffness to resist the shape deformation under normal loading conditions. Therefore, emphasis is given to the load-deformation behavior of the developed composites. A 3-dimensional model of the test specimen was developed using ply-stacking method and the strain-stress values were verified by the available literature. The model showed a good agreement between the experimental and software results. Effect of ply angle, fiber percentage, fiber type, number of layers and weft fiber angle on the stiffness of laminate have been studied.展开更多
Many researchers have shown interest in the reinforcement of commodity thermoplastic with natural fibers. However, the drawback of natural fibers is their low thermal processing temperatures, that border around 200℃....Many researchers have shown interest in the reinforcement of commodity thermoplastic with natural fibers. However, the drawback of natural fibers is their low thermal processing temperatures, that border around 200℃. In this investigation, we tried to improve the thermal stability of natural fibers with the use of flexible epoxy surface coating that could facilitate processing with engineering thermoplastics. Jute fabric and Polyamide 6 (PA6) composites were prepared by compression molding. The thermal decomposition characteristics of the jute fabric were evaluated by using thermo gravimetric analysis (TGA). Mechanical analysis was conducted to evaluate tensile test and three point bending test of composite. It was found that thermal degradation resistance of jute fabric was improved by coating with flexible epoxy resin. Moreover, the flexural modulus improved with increasing curative concentration. The interfacial interaction between the epoxy and PA6 was clearly indicated by the photo micrographs of the polished cross sections of the coated and uncoated jute fabric/PA6 composites.展开更多
基金the Science and Technology Research Project of Chongqing Education Commission(Nos.KJZD-K201901201,KJZD-202101201)the Top-notch Young Talents in Chongqing(No.CQYC201905086)the Technology Innovation and Application Development Project in Wanzhou District,Chongqing(No.wzstc-2019031)。
文摘To improve the brittleness characteristics of magnesium phosphate cement-based materials(MPC)and to promote its promotion and application in the field of structural reinforcement and repair,this study aimed to increase the toughness of MPC by adding jute fiber,explore the effects of different amounts of jute fiber on the working and mechanical properties of MPC,and prepare jute fiber reinforced magnesium phosphate cement-based materials(JFRMPC)to reinforce damaged beams.The improvement effect of beam performance before and after reinforcement was compared,and the strengthening and toughening mechanisms of jute fiber on MPC were explored through microscopic analysis.The experimental results show that,as the content of jute fiber(JF)increases,the fluidity and setting time of MPC decrease continuously;When the content of jute fiber is 0.8%,the compressive strength,flexural strength,and bonding strength of MPC at 28 days reach their maximum values,which are increased by 18.0%,20.5%,and 22.6%compared to those of M0,respectively.The beam strengthened with JFRMPC can withstand greater deformation,with a deflection of 2.3 times that of the unreinforced beam at failure.The strain of the steel bar is greatly reduced,and the initial crack and failure loads of the reinforced beam are increased by 192.1%and 16.1%,respectively,compared to those of the unreinforced beam.The JF added to the MPC matrix dissipates energy through tensile fracture and debonding pull-out,slowing down stress concentration and inhibiting the free development of cracks in the matrix,enabling JFRMPC to exhibit higher strength and better toughness.The JF does not cause the hydration of MPC to generate new compounds but reduces the amount of hydration products generated.
基金the Australian Government Research Training Program Scholarship and University of Adelaide Scholarship.
文摘Micaceous soils are common in many tropical countries and regions,and in some locations with moderate climate.The soils are spongy and unstable when loaded and are not considered suitable as construction material in earth structures.To resolve the issue,this work examined performance of micaceous soil reinforced with a combination of jute fibers,hydrated lime or slag-lime.A total of 28 sample sets were prepared at various dosages.Unconfined compression tests were conducted on the samples cured for 7 d and 28 d,respectively.The test results suggested that the unconfined compressive strength(UCS)and material stiffness were increased with the inclusion of up to 1%fiber and decreased if additional fibers were used.The ductility was improved consistently with up to 1.5%fiber content.The inclusions of fibers combined with hydrated lime or slag-lime further enhanced strength and stiffness of micaceous soil,and the improvement depended on the dosages used.For the dosages examined,jute fibers outweighed lime and slag in gaining ductility,and the optimal fiber content was 1%where strength and ductility were considered.
基金supported by the National Natural Science Foundation of China(Grant No.41877251,Li,https://www.nsfc.gov.cn/)the Key Scientific Research Projects of Colleges and Universities in Henan Province(Grant No.22A560021,Yang,http://jyt.henan.gov.cn/,Grant No.23A560014,Cheng,http://jyt.henan.gov.cn/)+1 种基金the Key Scientific and Technological Support Projects of Tianjin Key R&D Plan(Grant No.19YFZCSF00820,Li,https://kxjs.tj.gov.cn/)the Special Fund for Basic Scientific Research and Young Backbone Teachers of Zhongyuan University of Technology(K2020QN015,2020XQG14,Cheng,https://www.zut.edu.cn/).
文摘Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber.The tests have been conducted to analyze the liquid plastic limit,the particle distribution and the free expansion rate.The results show that:(1)With an increase in the cement-jute fiber content,the free expansion rate of the modified expansive soil gradually decreases,however,such a rate rebounds when the fiber content exceeds 0.5%and the cement content exceeds 6%.(2)With an increase in the cement percentage,the particle unevenness coefficient(Cu)and curvature coefficient(Cc)of the modified expansive soil tend to grow gradually.The Cc coefficient reaches 1.0 when the cement content is 6%.The unevenness coefficient of 16 soil samples is greater than 5.0,however,the Cu coefficient decreases when the cement content reaches 6%.(3)The plastic limit of soil increases as the cement content is made higher,while the liquid limit and plastic index decrease gradually.When the content of the modified material is 2%+0.1%~2%+0.7%(Cement content+jute fiber content),the change of particle size distribution is most obvious.(4)When the contents of cement and jute fiber are is 6%and 0.5%,respectively,the modification induced in the physical properties of soil samples corresponds to the best case.
文摘Jute is generally not dyed with reactive dye though it is a cellulosic fiber. Reactive dye is extensively used to dye cotton, viscose and other cellulosic fibers whereas jute is dyed with basic dye. This paper presents a novel approach to dye the jute fiber with reactive dye after treating with chitosan. Jute fabric was treated with chitosan solution at different con- centrations (0.5%, 1%, 2%, 3% and 4%) and then dyed with reactive dye. The depth and fastness of shade of dyed fabric were analyzed by comparing the chitosan treated samples with untreated dyed fabric samples. It has been found that, the dyebath exhaustion is increased with the increment of chitosan concentrations. The exhaustion percentages have found 36.79%, 41.59%, 48.33%, 54.46% and 58.75% for the fabric treated with 0.5%, 1%, 2%, 3% and 4% chitosan solution respectively, while the exhaustion of dyebath is only 23.15% for untreated fabric. The K/S values (at λmax = 540 nm) of dyed samples have found 4.93, 6.77, 10.5, 14.07, 15.57 and 2.37 for 0.5%, 1%, 2%, 3%, 4% and untreated fabric respectively. The color fastness to washing and rubbing of the dyed fabrics was also evaluated. In case of dry rubbing, both types of fabric have shown almost similar fastness ratings. However, chitosan treated fabrics have shown inferior fastness rating in case of wet rubbing and washing, particularly for the fabrics at higher chitosan concentrations.
文摘Jute fiber (woven fabric, 1 × 1 plain weave) reinforced polypropylene matrix composites were prepared by compression molding with various fiber loading such as 30%, 40%, 46%, 50%, 55% by weight. The mechanical properties such as tensile strength (TS), bending strength (BS), tensile modulus (TM), bending modulus (BM) and impact strength (IS) of the composite were assessed and analyzed. The highest value of TS, BS, TM, BM and IS were 68.1 MPa, 94.1 MPa, 2936 MPa, 4831 MPa and 14.5 kJ/m2 respectively with 50% fiber loading by weight. It was found that the mechanical properties of the composites were increased with the increase in jute fiber content up to 50% by weight;however, further increase in fiber loading the value decreased. On the basis of fiber content, 50% fiber reinforced composites had the optimum set of mechanical properties. Initially the water absorption rate was higher and then it became slower and static with time. Chemical ageing test with various chemical media such as H2O2, NaOH, HCl and NaCl were performed up to 168 hours. After first 24 hours the composite samples showed gradual weight gain (%) and then the weight gain was become slow and steady in the chemical solution.
文摘Impregnation rate of thermoplastic resin(polypropylene)in jute fiber mat and influence of relative factors on impregnation were studied,aiming to develop the continuous melt impregnation technique and to investigate the effect of impregnation rate and temperature on processing conditions and mechanical properties of natural fiber mat-reinforced thermoplastics.Influence of pressure on porosity of fiber mat and effect of melt viscosity on impregnation rate were also investigated.The modified capillary rheometer was used as apparatus and experimental data were analyzed based on the one-dimension Darcy’s law.Results showed that at a given pressure,the impregnation rate is inversely proportional to melt viscosity and jute fiber mat has higher porosity than glass fiber mat.The architecture,compressibility,permeability and fiber diameter of jute fiber mat were compared with those of glass fiber mat and their effects on impregnation were discussed further.It could be seen that the average diameter of jute fiber is much bigger;the porosity of jute fiber mat is significantly higher and inner bundle impregnation does not exist in jute fiber mat.Therefore,it is not difficult to understand why the impregnation rate in jute fiber mat is 3.5 times higher and permeability is 14 times greater.Kozeny constants of jute and glass fiber mats calculated based on the capillary model are 2950 and 442,respectively.
文摘Hybrid materials of any class are essential for current demands. This paper deals with the hybrid effect of composites made of jute/E-Glass fibers which are fabricated by hand layup method using LY556 Epoxy resin and HY951 hardener. The properties of this hybrid composite are determined by testing like tensile, flexural, impact, and inter laminar shear strength which are evaluated experimentally according to ASTM standards. The result of the test shows that hybrid composite of jute/ E-glass fiber has far better properties than that of jute fiber composite. However, it is found that the hybrid composite has better strength as compared to jute fiber composite fabricated separately with glass fiber.
基金supported by the National Nature Science Foundation of China(Nos.11505272,51773221,U1732123)Youth Innovation Promotion Association CAS(No.2017308)
文摘Cellulose nanofibrils(CNFs) are a type of natural nanomaterials extracted from plants and animals that have expanding applications in numerous areas benefiting from their inherent properties of renewability,biodegradability,and sustainability.For energy consumption reduction,CNFs were extracted from raw jute fibers,which were not pretreated in a hot alkali or acid solution,by TEMPOmediated oxidation.Synchrotron radiation wide-angle scattering was performed to realize the crystallization of the CNF crystallites;Fourier transform infrared spectroscopy,transmission electron microscopy,and fieldemission scanning electron microscopy were used to characterize the changes in chemical groups and visualized morphology of CNFs.The simplified preparation and shortened cycle should further help the study of the structure–function relationship of jute CNFs subjected to chemical modification.
文摘Short jute fiber (2 - 3 mm) reinforced polypropylene PP-based composites (20% fiber by weight) were fabricated using compression molding and the mechanical properties were evaluated. Tensile strength (TS), tensile modulus (TM), elongation at break (Eb%), flexural strength (FS), flexural modulus (FM), impact strength (IS), and hardness of the composites were found to be 32 MPa, 850 MPa, 12%, 38 MPa, 1685 MPa, 18 kJ/m2 and 96 shore-A, respectively. Then short E-glass fiber (2 - 3 mm) reinforced PP-based composites (20% fiber by weight) were fabricated and mechanical properties were compared with short jute-based composites. Short jute-based composites showed excellent mechanical properties and comparable to short E-glass-based composites. Soil degradation test of both types of composites indi-cated that jute/PP composites significantly lost much of its mechanical properties but E-glass/PP composites retained major portion of its original integrity. Interfaces of the degraded composites were investigated by scanning electron microscopy and supported the biodegradation properties of jute/PP composites.
文摘In this study, jute woven fabrics (1 × 1 plain, twill, zigzag and diamond weave) were manufactured from 100% raw jute yarn. The fabric specimens were treated by 5%, 10%, 15%, 20% and 25% unsaturated polyester resin where styrene monomer used as a solvent and 1% methyl ethyl ketone peroxide (MEKP) was used as initiator. Two bar pressure was applied for complete wetting of the fabric by a Padder and curing was done at 130?C for 10 minutes. The physico-mechanical characteristics of untreated and treated samples were examined and evaluated. It was revealed that moisture content (MC) and water absorbency of the treated specimens were decreased with the increase of resin percentage (%) in the fabrics. MC and water absorbency were maximum decreased up to 50.23% and 60.14% respectively by 25% resin treatment. On the other hand, bending length (BL), flexural rigidity (FR), flexural modulus (FM) and tensile strength (TS) were enhanced with the increase of resin percentage in the fabrics which resulted higher fabric stiffness. The maximum improvement of BL, FR, FM and TS were found to be 6.67%, 56.04%, 10.57% and 18.75% respectively in comparison to untreated sample. Soil degradation tests exhibited that 33.59% TS loss occurred for untreated specimens where only 8.04% loss of TS found for 25% resin treated one. Furthermore, jute based twill, zigzag and diamond fabrics were also treated by 10%, 15%, 20% and 25% resin, then measured their TS and compared with plain fabrics. It was revealed that plain fabrics have superior TS over other fabrics. It was also evident that TS enhanced for all the fabrics after resin treatment and maximum increase found for all the fabrics up to 25% resin treatment.
基金The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China(Grant Nos.51979267 and 52074143)the Major Science and Technology Program of Inner Mongolia,China(Grant No.2021ZD0007).
文摘Biopolymers have become popular in geotechnical engineering as they provide a carbon-neutral alternative for soil solidification.Xanthan gum(XG)and jute fiber(JF)were selected to solidify the Yellow River dredged soil.The mechanical behavior of solidified dredged soil(SDS)was investigated using a series of uniaxial compression and splitting tension tests at different XG and JF contents and fiber lengths.The results indicate that on the 28th day,the unconfined compressive strength(UCS)values of SDS samples reached 2.83 MPa and splitting tensile strength(STS)of 0.763 MPa at an XG content of 1.5%.When the JF content was greater than 0.9%,the STS of the SDS samples decreased.This is because that the large fiber content weakened the cementation ability of XG.The addition of JF can significantly increase the strain at peak strength of SDS samples.There is a linear relationship between the UCS and STS of the dredged soils solidified by XG and JF.Microanalysis shows that the strength of SDS samples was improved mainly via the cementation of XG itself and the network structure formed by JF with soil particles.The dredged soil reinforced by XG and JF shows better mechanical performance and has great potential for application.
基金the Federal Institute of Education,Science and Technology of Bahia(IFBA)and its Office of Research,Graduation Studies and Innovation(PRPGI)for the financial support.
文摘Jute is a natural fiber widely used as reinforcement in composites due to its high tensile strength and stiffness,but they can easily absorb water and have their physical properties compromised.The water absorption properties of jute/polyester composites are evaluated according to ASTM D 570 and the effect of humidity in the composite mechanical behavior is also analyzed.The composite showed a pseudo-Fickian behavior and gained 13.37%in weight after the test.It also lost tensile strength and elasticity modulus,and increased its specific deformation.Scanning electron microscope images showed that wet specimens were more subject to cracks,voids and fiber pullout than dry specimens.Failures produced by water diffusion in composite and polymer plasticization,added to breakdown in the fibers’cellulosic structures,justify the change in mechanical properties due to water absorption.
文摘Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doors of analysis and simulation of composite materials under various environment.Modelling and simulation using various available softwares saves a lot of time and resources. In the present work, an attempt has been made to analyze the tensile behavior of jute fiber reinforced epoxy based polymer composite materials using the student version of commercially available finite element code Siemens PLM NX 10.0. In most of the structural applications, materials are required to have enough stiffness to resist the shape deformation under normal loading conditions. Therefore, emphasis is given to the load-deformation behavior of the developed composites. A 3-dimensional model of the test specimen was developed using ply-stacking method and the strain-stress values were verified by the available literature. The model showed a good agreement between the experimental and software results. Effect of ply angle, fiber percentage, fiber type, number of layers and weft fiber angle on the stiffness of laminate have been studied.
文摘Many researchers have shown interest in the reinforcement of commodity thermoplastic with natural fibers. However, the drawback of natural fibers is their low thermal processing temperatures, that border around 200℃. In this investigation, we tried to improve the thermal stability of natural fibers with the use of flexible epoxy surface coating that could facilitate processing with engineering thermoplastics. Jute fabric and Polyamide 6 (PA6) composites were prepared by compression molding. The thermal decomposition characteristics of the jute fabric were evaluated by using thermo gravimetric analysis (TGA). Mechanical analysis was conducted to evaluate tensile test and three point bending test of composite. It was found that thermal degradation resistance of jute fabric was improved by coating with flexible epoxy resin. Moreover, the flexural modulus improved with increasing curative concentration. The interfacial interaction between the epoxy and PA6 was clearly indicated by the photo micrographs of the polished cross sections of the coated and uncoated jute fabric/PA6 composites.