期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
变换为团路的团树的距离无符号拉普拉斯谱半径
1
作者 朱银芬 胡卫敏 冯小云 《长春师范大学学报》 2017年第8期1-5,共5页
若一个连通图G的点集是V(G)={v_1,v_2,…,v_n}.图G的距离矩阵D(G)=(d_(ij)),其中dij表示点v_i与v_j之间的距离.Tr_G(v_i)表示点v_i到图G所有其他点的距离之和,Tr(G)表示i行i列位置的元素是Tr_G(v_i)的对角矩阵.G的距离无符号拉普拉斯矩... 若一个连通图G的点集是V(G)={v_1,v_2,…,v_n}.图G的距离矩阵D(G)=(d_(ij)),其中dij表示点v_i与v_j之间的距离.Tr_G(v_i)表示点v_i到图G所有其他点的距离之和,Tr(G)表示i行i列位置的元素是Tr_G(v_i)的对角矩阵.G的距离无符号拉普拉斯矩阵QD(G)=Tr(G)+D(G).QD(G)的最大特征值λQ(G)是图G的距离无符号拉普拉斯谱半径.本文分别确定了变换为团路的团树中具有最大与最小的距离无符号拉普拉斯谱半径的极图. 展开更多
关键词 距离无符号拉普拉斯谱半径 团树 k-t正则图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部