In this paper we give a strong converse inequality of type B in terms of unified K-functional Kλα (f, t2) (0 ≤λ≤ 1, 0 〈 α 〈 2) for the Meyer-Knig and Zeller-Durrmeyer type operators.
It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip ...It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip distribution on the main fault play a fundamental role to control strong ground motion pattern. A large amount of works have also suggested that variable slip models inverted from longer period ground motion recordings are relevant for the prediction of higher frequency ground motions. Zhang et al. (Chin J Geophys 56:1412-1417, 2013) and Wang et al. (Chin J Geophys 56:1408-1411,2013) published their source inversions for the fault rupturing process soon after the April 20, 2013 Lushan earthquake in Sichuan, China. In this study, first, we synthesize two forward source slip models: the value of maximum slip, fault dimension, size, and dimension of major asperities, and comer wave number obtained from Wang's model is adopted to constrain the gen- eration of k-2 model and crack model. Next, both inverted and synthetic slip models are employed to simulate the ground motions for the Lushan earthquake based on the stochastic finite-fault method. In addition, for a comparison purpose, a stochastic slip model and another k-2 model (k 2 model II) with 2 times value of comer wave number of the original k-2 model (k 2 model I) are also employed for simulation for Lushan event. The simulated results characterized by Modified Mer- calli Intensity (MMI) show that the source slip models based on the inverted and synthetic slip distributions could capture many basic features associated with the ground motion patterns. Moreover, the simulated MMI distributions reflect the rupture directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulated MMI bystochastic slip model and k 2 model II is apparently higher than observed intensity. By contrast, our simulation results show that the higher frequency ground motion is sensitive to the degree of slip roughness; therefore, we suggest that, for realistic ground- motion simulations due to future earthquake, it is imperative to properly estimate the slip roughness distribution.展开更多
This paper concerns the theoretical and experimental modelling of the flat wall,highly heated,compressible turbulent boundary layer.Its final objective is to develop a numerical Navier-Stokes solver and to conclude on...This paper concerns the theoretical and experimental modelling of the flat wall,highly heated,compressible turbulent boundary layer.Its final objective is to develop a numerical Navier-Stokes solver and to conclude on its capability to correctly represent complex aerothermic viscous flows near the wall.The paper presents a constructed numerical method with particular attention given to the turbulence modelling at low Reynolds number and comparisons with supersonic and transonic experimental data.For the transonic experiment,very high wall temperature(Tw=1100K)is realized.The method of this difficult experimental set up is discussed.The comparison between experimental and computational data conducts to the first conclusion and gives some indications for the future work.展开更多
基金The NSF (10571040) of ChinaNSF (L2010Z02) of Hebei Normal University
文摘In this paper we give a strong converse inequality of type B in terms of unified K-functional Kλα (f, t2) (0 ≤λ≤ 1, 0 〈 α 〈 2) for the Meyer-Knig and Zeller-Durrmeyer type operators.
基金supported by the CAS/SAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-19)
文摘It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip distribution on the main fault play a fundamental role to control strong ground motion pattern. A large amount of works have also suggested that variable slip models inverted from longer period ground motion recordings are relevant for the prediction of higher frequency ground motions. Zhang et al. (Chin J Geophys 56:1412-1417, 2013) and Wang et al. (Chin J Geophys 56:1408-1411,2013) published their source inversions for the fault rupturing process soon after the April 20, 2013 Lushan earthquake in Sichuan, China. In this study, first, we synthesize two forward source slip models: the value of maximum slip, fault dimension, size, and dimension of major asperities, and comer wave number obtained from Wang's model is adopted to constrain the gen- eration of k-2 model and crack model. Next, both inverted and synthetic slip models are employed to simulate the ground motions for the Lushan earthquake based on the stochastic finite-fault method. In addition, for a comparison purpose, a stochastic slip model and another k-2 model (k 2 model II) with 2 times value of comer wave number of the original k-2 model (k 2 model I) are also employed for simulation for Lushan event. The simulated results characterized by Modified Mer- calli Intensity (MMI) show that the source slip models based on the inverted and synthetic slip distributions could capture many basic features associated with the ground motion patterns. Moreover, the simulated MMI distributions reflect the rupture directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulated MMI bystochastic slip model and k 2 model II is apparently higher than observed intensity. By contrast, our simulation results show that the higher frequency ground motion is sensitive to the degree of slip roughness; therefore, we suggest that, for realistic ground- motion simulations due to future earthquake, it is imperative to properly estimate the slip roughness distribution.
基金supported jointly by the Centre National de la Recherche Scientifiquethe Korea Science and Engineering Foundation
文摘This paper concerns the theoretical and experimental modelling of the flat wall,highly heated,compressible turbulent boundary layer.Its final objective is to develop a numerical Navier-Stokes solver and to conclude on its capability to correctly represent complex aerothermic viscous flows near the wall.The paper presents a constructed numerical method with particular attention given to the turbulence modelling at low Reynolds number and comparisons with supersonic and transonic experimental data.For the transonic experiment,very high wall temperature(Tw=1100K)is realized.The method of this difficult experimental set up is discussed.The comparison between experimental and computational data conducts to the first conclusion and gives some indications for the future work.