期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于可传递信度模型的k-NN分类规则 被引量:2
1
作者 刘邱云 吴根秀 付雪峰 《江西师范大学学报(自然科学版)》 CAS 2004年第3期221-223,共3页
针对训练模式所属类不确定情形,提出了基于可传递信度模型(TBM)的k-NN分类规则,并结合模糊集理论及可能性理论进行了拓广,最后通过计算机模拟实验将两者作了比较.
关键词 可传递信度模型 k-nn分类规则 TBM pignistic概率 隶属度 可能性测度 模糊集 模式识别
下载PDF
基于EK-NN的水声目标识别算法研究 被引量:3
2
作者 张扬 杨建华 侯宏 《声学技术》 CSCD 北大核心 2016年第1期15-19,共5页
针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指... 针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。 展开更多
关键词 水声目标识别 证据理论 证据k类近邻算法(Ek-nn) 特征向量 组合规则
下载PDF
高斯加权的重构性K-NN算法研究 被引量:1
3
作者 刘作国 陈笑蓉 《中文信息学报》 CSCD 北大核心 2015年第5期112-116,共5页
该文提出基于高斯加权距离以及聚类重构机制的K-NN文本聚类算法。文章提出K-NN近邻域的概念,通过高斯加权的近邻域算法实施K-NN聚类。利用高斯函数根据样本与聚类中心的距离为样本赋权,计算聚类距离。基于近邻域权重和聚类密度对形成的... 该文提出基于高斯加权距离以及聚类重构机制的K-NN文本聚类算法。文章提出K-NN近邻域的概念,通过高斯加权的近邻域算法实施K-NN聚类。利用高斯函数根据样本与聚类中心的距离为样本赋权,计算聚类距离。基于近邻域权重和聚类密度对形成的聚类实施重构,实现聚类数目的自适应调整。使用拆分算子拆分稀疏聚类并调整异常样本;使用合并算子合并相似聚类。实验显示聚类重构机制能够有效地提高聚类的准确率及召回率,增加聚类密度,使得形成的聚类结果更加合理。 展开更多
关键词 文本聚类 k-nn算法 高斯加权 近邻域规则 聚类重构
下载PDF
基于例子的三维运动检索 被引量:9
4
作者 刘丰 庄越挺 +1 位作者 吴飞 潘云鹤 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2003年第10期1275-1280,共6页
首先 ,运用动态聚类算法建立基于层次化运动描述的运动检索树 ;然后 ,根据得到的运动检索树 ,采用k近邻法则对例子运动进行分类 ,确定检索子集 ;最后 ,采用弹性匹配算法计算例子运动和被检索运动子集间的相似度 ,得到检索结果 为了提... 首先 ,运用动态聚类算法建立基于层次化运动描述的运动检索树 ;然后 ,根据得到的运动检索树 ,采用k近邻法则对例子运动进行分类 ,确定检索子集 ;最后 ,采用弹性匹配算法计算例子运动和被检索运动子集间的相似度 ,得到检索结果 为了提高检索效率 ,采用聚类算法提取运动关键帧序列表征运动 。 展开更多
关键词 三维运动检索 计算机动画 运动捕获 动态聚类算法
下载PDF
基于案例推理的元胞自动机及大区域城市演变模拟 被引量:88
5
作者 黎夏 刘小平 《地理学报》 EI CSCD 北大核心 2007年第10期1097-1109,共13页
元胞自动机(CA)被越来越多地用于复杂系统的模拟中。许多地理现象的演变与其影响要素之间存在着复杂的关系,并往往具有时空动态性。在研究区域较大和模拟时间较长时,定义具体的规则来反映这种复杂关系有较大的困难。为了解决CA转换规则... 元胞自动机(CA)被越来越多地用于复杂系统的模拟中。许多地理现象的演变与其影响要素之间存在着复杂的关系,并往往具有时空动态性。在研究区域较大和模拟时间较长时,定义具体的规则来反映这种复杂关系有较大的困难。为了解决CA转换规则获取的瓶颈问题,提出了基于案例推理(CBR)的CA模型,并对CBR的k近邻算法进行了改进,使其能反映转换规则的时空动态性。将该模型应用于大区域的珠江三角洲城市演变中。实验结果显示,其模拟的空间格局与实际情况吻合较好。与常规的基于Logistic的CA模型进行了对比,所获得的模拟结果有更高的精度和更接近实际的空间格局,特别在模拟较为复杂的区域时有更好的模拟效果。 展开更多
关键词 元胞自动机 案例推理 k近邻算法 动态转换规则
下载PDF
基于局部加权重构的化工过程数据恢复算法 被引量:4
6
作者 郭金玉 袁堂明 李元 《计算机应用》 CSCD 北大核心 2016年第1期282-286,共5页
针对化工过程数据中存在缺失数据的问题,在保持局部数据结构特征的基础上提出了基于局部加权重构的化工过程数据恢复算法。通过定位缺失的数据点并以符号Na N(Not a Number)标记,将缺失的数据集分为完备数据集和不完备数据集。不完备的... 针对化工过程数据中存在缺失数据的问题,在保持局部数据结构特征的基础上提出了基于局部加权重构的化工过程数据恢复算法。通过定位缺失的数据点并以符号Na N(Not a Number)标记,将缺失的数据集分为完备数据集和不完备数据集。不完备的数据集按照完整性的大小依次找到它们在完备数据集中相应的k个近邻,根据误差平方和最小的原则,求出k个近邻相应的权值,用k个近邻及相应的权值重构出缺失的数据点。将该算法应用在不同缺失率下的两种化工过程数据中并与望最大化主成分分析(EM-PCA)法和平均值(MA)两种传统的数据恢复算法相比较,该算法的恢复数据误差最小,并且计算速度相比EM-PCA算法平均提高了2倍。实验结果表明,局部加权重构的化工过程数据恢复算法可以有效地对数据进行恢复,提高了数据的利用率,适用于非线性化工过程缺失数据的恢复。 展开更多
关键词 数据挖掘 缺失数据 数据恢复 k近邻规则 局部加权重构 化工过程
下载PDF
Improving Decision Tree Performance by Exception Handling 被引量:1
7
作者 Appavu Alias Balamurugan Subramanian S.Pramala +1 位作者 B.Rajalakshmi Ramasamy Rajaram 《International Journal of Automation and computing》 EI 2010年第3期372-380,共9页
This paper focuses on improving decision tree induction algorithms when a kind of tie appears during the rule generation procedure for specific training datasets. The tie occurs when there are equal proportions of the... This paper focuses on improving decision tree induction algorithms when a kind of tie appears during the rule generation procedure for specific training datasets. The tie occurs when there are equal proportions of the target class outcome in the leaf node's records that leads to a situation where majority voting cannot be applied. To solve the above mentioned exception, we propose to base the prediction of the result on the naive Bayes (NB) estimate, k-nearest neighbour (k-NN) and association rule mining (ARM). The other features used for splitting the parent nodes are also taken into consideration. 展开更多
关键词 Data mining classification decision tree majority voting naive Bayes (NB) k nearest neighbour (k nn) association rule mining (ARM)
下载PDF
基于证据理论的钢球磨煤机料位不确定性量化研究 被引量:2
8
作者 李亚光 韩洪兆 王爽心 《北京交通大学学报》 CAS CSCD 北大核心 2021年第3期126-134,共9页
针对钢球磨煤机具有多变量、强耦合和非线性等特性使其面临监测精度低、难度大、性能不稳定等问题.首先设计了现场参数采集实验并利用灰熵关联理论对球磨机料位及其辅助变量间的相关性进行了分析.然后从结构参数、优化准则以及参数距离... 针对钢球磨煤机具有多变量、强耦合和非线性等特性使其面临监测精度低、难度大、性能不稳定等问题.首先设计了现场参数采集实验并利用灰熵关联理论对球磨机料位及其辅助变量间的相关性进行了分析.然后从结构参数、优化准则以及参数距离出发对传统证据理论进行改进,提出了具有鲁棒性和自适应性的新型证据k-NN(Robust Adaptive Evidence k-Nearest Neighbors,RAEk-NN)分类器,再以RAEk-NN分类器构建料位的证据回归多模型,并结合非线性偏最小二乘(Nonlinear Partial Least Squares,NPLS)和支持向量机(Support Vector Machine,SVM)建立了D-S融合法则料位不确定性量化组合模型.结果表明:所提出的组合模型能够实现更精确的料位预测结果,更适应于工况多变的复杂情况,可用于实际生产过程. 展开更多
关键词 钢球磨煤机 证据理论 D-S融合法则 k-nn分类器 不确定性量化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部