期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
融合稀疏约束的双向k近邻粗糙集模型
1
作者 樊晓雪 尹涛 +2 位作者 陆杨 鞠恒荣 丁卫平 《小型微型计算机系统》 CSCD 北大核心 2024年第10期2370-2377,共8页
k近邻粗糙集作为邻域粗糙集的拓展,被广泛应用于知识发现等领域.k近邻粗糙集模型的粒度构建是选取最近的k个样本.然而,传统k近邻粒度不能有效处理样本分布不均匀的数据.此外,单向粒度构建方法也会导致部分离群点被归入到粒度模型中,增... k近邻粗糙集作为邻域粗糙集的拓展,被广泛应用于知识发现等领域.k近邻粗糙集模型的粒度构建是选取最近的k个样本.然而,传统k近邻粒度不能有效处理样本分布不均匀的数据.此外,单向粒度构建方法也会导致部分离群点被归入到粒度模型中,增加了粒度的不确定性.为了解决上述问题,提升粒度模型的稳定性,本文提出了一种融合稀疏约束的双向k近邻粗糙集模型.首先,通过稀疏约束模型刻画样本之间联系,选取紧密关联的样本构造稀疏双向k近邻粒度.然后,基于双向互邻信息策略,剔除模型中不符合该策略的样本.最后,通过条件熵与互信息熵刻画粒度的不确定性程度.UCI数据集的实验结果证明,本文提出的融合稀疏约束的双向k近邻粗糙集模型能够降低信息的不确定性,也为k近邻粗糙集模型的改进提供了新的方向. 展开更多
关键词 k近邻粗糙集 稀疏约束 双向策略 条件熵 互信息熵
下载PDF
基于邻域互信息与K-means特征聚类的特征选择 被引量:1
2
作者 孙林 梁娜 徐久成 《智能系统学报》 CSCD 北大核心 2024年第4期983-996,共14页
针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为... 针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为自适应邻域半径,确定样本的邻域集,并由此构建自适应邻域熵、邻域互信息、归一化邻域互信息等度量,反映特征之间的相关性;然后,基于归一化邻域互信息构建自适应K近邻集合,利用Pearson相关系数表示特征的权重定义加权K近邻密度,实现自动选取K-means算法的簇中心,进而完成K-means特征聚类;最后,给出加权平均冗余度,选出每个特征簇中加权平均冗余度最大的特征构成最优特征子集。实验结果表明所提算法不仅可以有效提升特征选择的分类结果而且可以获得更好的聚类效果。 展开更多
关键词 特征选择 邻域互信息 k-MEANS 特征聚类 自适应k近邻 特征权重 加权k近邻密度
下载PDF
通过相似度支持度优化基于K近邻的协同过滤算法 被引量:126
3
作者 罗辛 欧阳元新 +1 位作者 熊璋 袁满 《计算机学报》 EI CSCD 北大核心 2010年第8期1437-1445,共9页
个性化推荐系统能基于用户个人兴趣为用户提供定制信息.此类系统通常使用协同过滤技术实现,其中一种广泛使用的经典模型是基于用户评分相似度的k近邻模型.使用k近邻模型需要预先计算出用户或者项目的k个最近邻居,k值过大时会导致计算量... 个性化推荐系统能基于用户个人兴趣为用户提供定制信息.此类系统通常使用协同过滤技术实现,其中一种广泛使用的经典模型是基于用户评分相似度的k近邻模型.使用k近邻模型需要预先计算出用户或者项目的k个最近邻居,k值过大时会导致计算量过大而影响推荐产生的实时性,而k值过小则会导致推荐精度下降.为解决此问题,该文中提出了一种新的最近邻度量——相似度支持度.基于相似度支持度,该文提出了数种能够在保持推荐精度和密度的前提下维持合理规模的k近邻的策略.在真实大规模数据集上的实验结果表明,相比传统算法,该文提出的策略能够在保证推荐精度的前提下大幅降低计算复杂度. 展开更多
关键词 个性化推荐 协同过滤 相似度支持度 k近邻 近邻关系模型
下载PDF
基于WiFi的自适应匹配预处理WKNN算法 被引量:17
4
作者 王磊 周慧 +1 位作者 蒋国平 郑宝玉 《信号处理》 CSCD 北大核心 2015年第9期1067-1074,共8页
针对基于接收信号强度(Received Signal Strength,RSS)的WiFi室内定位技术中,传统加权K邻近(Weighted K-nearest Neighbor,WKNN)算法不能自适应获取WLAN中有效接入点(Acess Point,AP)且参考点匹配准确度不高的问题,本文提出了自适应匹... 针对基于接收信号强度(Received Signal Strength,RSS)的WiFi室内定位技术中,传统加权K邻近(Weighted K-nearest Neighbor,WKNN)算法不能自适应获取WLAN中有效接入点(Acess Point,AP)且参考点匹配准确度不高的问题,本文提出了自适应匹配预处理WKNN算法。该算法中每个实时定位点自适应地根据网络状况对AP的RSS均值由大到小排序,然后选择RSS均值较大的前M个AP,与参考点中对应的M个AP一起参与匹配预处理计算,从而优化了传统的指纹定位算法。同时将室内定位和室内地图相结合,使参考点和定位结果直观地展示在地图上,并通过使用地图数据大幅度简化了离线训练过程。此外,本文设计并实现了基于Android平台的室内定位系统,通过该系统验证了本文所提算法在单点定位和移动定位中的有效性。实验结果表明,该算法可获得30以上的定位误差改善,有效提高了定位精度和定位稳定性。 展开更多
关键词 WIFI 室内定位 室内地图 加权k邻近算法 自适应匹配预处理
下载PDF
采用聚类算法优化的K近邻协同过滤算法 被引量:20
5
作者 尹航 常桂然 王兴伟 《小型微型计算机系统》 CSCD 北大核心 2013年第4期806-809,共4页
协同过滤推荐是电子商务系统最重要的技术之一,而协同过滤技术中一种被广泛使用的算法就是基于用户评分相似度的K近邻算法.该算法简单有效,易于实现.但K近邻算法在决定待预测样本的预测评分时,并未考虑这K个最近邻与其隶属类别的关联程... 协同过滤推荐是电子商务系统最重要的技术之一,而协同过滤技术中一种被广泛使用的算法就是基于用户评分相似度的K近邻算法.该算法简单有效,易于实现.但K近邻算法在决定待预测样本的预测评分时,并未考虑这K个最近邻与其隶属类别的关联程度.作为评分矩阵中的不同样本,由于它们对分类贡献各不相同,因此在评分预测时需要区别对待.本文采用中心聚类算法,先求出各样本与其所属类别的类别关联度,再利用类别关联度来区别对待待预测样本的K个最近邻.通过实验证明,优化后的K近邻算法能较好的提高推荐精度. 展开更多
关键词 k近邻 协同过滤 聚类算法 类别关联度
下载PDF
基于动态k近邻的SlopeOne协同过滤推荐算法 被引量:20
6
作者 孙丽梅 李晶皎 孙焕良 《计算机科学与探索》 CSCD 2011年第9期857-864,共8页
协同过滤是个性化推荐系统中的常用技术,数据稀疏性是影响协同过滤算法预测精度的主要因素。SlopeOne算法利用线性回归模型解决数据稀疏性问题。基于用户相似度的k近邻方法可以优化参与预测的用户评分数据的质量。在SlopeOne算法的基础... 协同过滤是个性化推荐系统中的常用技术,数据稀疏性是影响协同过滤算法预测精度的主要因素。SlopeOne算法利用线性回归模型解决数据稀疏性问题。基于用户相似度的k近邻方法可以优化参与预测的用户评分数据的质量。在SlopeOne算法的基础上,提出了一种动态k近邻和SlopeOne相结合的算法。首先根据用户之间相似度的具体情况动态地为每个用户选择不同数目的近邻用户,然后利用近邻用户的评分数据生成项目之间的平均偏差,最后利用线性回归模型进行预测。在MovieLens数据集上的实验结果表明,改进算法在预测精度上比原SlopeOne算法有所提高,能适应数据稀疏度更低的推荐系统,并且与其他协同过滤算法相比,推荐精度也具有明显优势。 展开更多
关键词 协同过滤 推荐系统 k近邻 数据挖掘 知识发现
下载PDF
改进的K近邻方法在岩性识别中的应用 被引量:14
7
作者 王淑盛 徐正光 +2 位作者 刘黄伟 王志良 史立峰 《地球物理学进展》 CSCD 2004年第2期478-480,共3页
 岩性识别是石油勘探中的一项重要内容,数据信息的精度往往会严重的影响到识别的准确率.本文根据数据的特点,改进了传统的K近邻方法,提出了加权K近邻的方法,进一步增强了利用测井数据识别岩性的能力,并在实际应用中证明了本方法的正确...  岩性识别是石油勘探中的一项重要内容,数据信息的精度往往会严重的影响到识别的准确率.本文根据数据的特点,改进了传统的K近邻方法,提出了加权K近邻的方法,进一步增强了利用测井数据识别岩性的能力,并在实际应用中证明了本方法的正确性和实用性. 展开更多
关键词 加权k近邻 岩性识别 石油勘探
下载PDF
基于局部均值的K-近质心近邻光谱分类 被引量:3
8
作者 屠良平 魏会明 +3 位作者 王志衡 韦鹏 罗阿理 赵永恒 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第4期1103-1106,共4页
天体光谱包含着许多重要的关于天体的物理和化学信息,如天体表面的有效温度、重力加速度以及化学丰度等,天体光谱的处理和分析对天文研究具有重要的科学意义。一些大型巡天计划的实施(如SDSS,LAMOST等)使我们获得了海量的天文光谱数据,... 天体光谱包含着许多重要的关于天体的物理和化学信息,如天体表面的有效温度、重力加速度以及化学丰度等,天体光谱的处理和分析对天文研究具有重要的科学意义。一些大型巡天计划的实施(如SDSS,LAMOST等)使我们获得了海量的天文光谱数据,因此天文光谱数据的自动分类成为重要的科学研究课题,然而面对如此海量的光谱数据,一些传统的光谱自动分类方法已经不适用,迫切需要寻找高效率的光谱自动分类技术。研究了基于局部均值的K-近质心近邻(local mean-based K-nearest centroid neighbor,LMKNCN)算法在恒星(Star)、星系(Galaxy)和类星体(Quasar,QSO)的光谱分类中的应用。LMKNCN算法的基本思想是根据近质心近邻原则,从每一类训练样本集中为待测样本点选取k个近质心近邻点,然后根据每一类中所选取的k个近质心近邻点的均值点到待测样本点x的距离来判别x的所属类别。针对美国SDSS-DR8的天体光谱数据,对比了K-近邻、K-近质心近邻、LMKNCN三种算法在恒星、星系和类星体的光谱分类中所表现的性能,结果表明三种方法中,LMKNCN算法对这三种光谱的识别率高于其他两种算法或者与其相当,而且其平均分类正确率高于另外两种算法,特别是在类星体的识别率上表现的更好。表明了该算法对天文光谱大数据的快速处理和有效利用具有重要的意义。 展开更多
关键词 光谱分类 k-近邻 近质心近邻 k-近质心近邻
下载PDF
基于K-近邻树的离群检测算法 被引量:4
9
作者 范小刚 朱庆生 万家强 《计算机应用研究》 CSCD 北大核心 2015年第3期669-673,共5页
为适应数据集分布形状多样性以及克服数据集密度问题,针对已有算法对离群簇检测效果欠佳的现状,提出了一种基于K-近邻树的离群检测算法KNMOD(outlier detection based on K-nearest neighborhood MST)。算法结合密度与方向因素,提出一... 为适应数据集分布形状多样性以及克服数据集密度问题,针对已有算法对离群簇检测效果欠佳的现状,提出了一种基于K-近邻树的离群检测算法KNMOD(outlier detection based on K-nearest neighborhood MST)。算法结合密度与方向因素,提出一种基于K-近邻的不相似性度量,然后带约束切割基于此度量构建的最小生成树从而获得离群点。算法可以有效地检测出局部离群点以及局部离群簇,与LOF、COF、KNN及INFLO算法的对比结果也证实了算法的优越性能。 展开更多
关键词 离群检测 离群簇 最小生成树 不相似性 k-近邻
下载PDF
PODKNN:面向大数据集的并行离群点检测算法 被引量:7
10
作者 苟杰 马自堂 张喆程 《计算机科学》 CSCD 北大核心 2016年第7期251-254,274,共5页
针对现有离群点检测算法在运用于大规模数据集时时间效率较低的问题,提出一种基于K近邻的并行离群点检测算法PODKNN(Parallel Outlier Detection Based on K-nearest Neighborhood)。该算法利用划分策略对数据集进行预处理,在规模较小... 针对现有离群点检测算法在运用于大规模数据集时时间效率较低的问题,提出一种基于K近邻的并行离群点检测算法PODKNN(Parallel Outlier Detection Based on K-nearest Neighborhood)。该算法利用划分策略对数据集进行预处理,在规模较小的子集中寻找K近邻并计算离群度,最后合并结果并遴选出离群点,设计算法过程使其符合MapReduce的编程模型,实现并行化,从而提高了离群点检测算法处理大规模数据的计算效率。实验结果表明,PODKNN具有较高的加速比及较好的扩展性。 展开更多
关键词 数据挖掘 离群点检测 k近邻 MAPREDUCE
下载PDF
融合邻域信息的k-近邻分类 被引量:3
11
作者 林耀进 李进金 +1 位作者 陈锦坤 马周明 《智能系统学报》 CSCD 北大核心 2014年第2期240-243,共4页
距离度量是影响k-近邻(KNN)法分类精度的重要因素之一。提出一种融合邻域信息的k-近邻算法。首先,定义了样本邻域的概念,并根据邻域的影响提出2条相应准则;然后,在计算测试样本与训练样本的距离时,综合考虑了样本邻域所带来的影响。该... 距离度量是影响k-近邻(KNN)法分类精度的重要因素之一。提出一种融合邻域信息的k-近邻算法。首先,定义了样本邻域的概念,并根据邻域的影响提出2条相应准则;然后,在计算测试样本与训练样本的距离时,综合考虑了样本邻域所带来的影响。该算法不仅可以更加精确地刻画样本之间的距离,而且一定程度上增强了KNN的稳定性。该方法在UCI标准数据集上进行了测试,结果表明,性能优于或与其他相关的分类器相当,并且在噪声扰动下具有较强的鲁棒性。 展开更多
关键词 k-近邻 邻域信息 分类学习 距离测量 噪音干扰
下载PDF
K近邻短期交通流预测 被引量:13
12
作者 方琴 李永前 《重庆交通大学学报(自然科学版)》 CAS 北大核心 2012年第4期828-831,共4页
从分析短时交通流特性入手,利用非参数回归中K近邻的方法,对道路交通流量进行短期预测;采用贵阳市道路交通流量的实际数据进行验证。结果表明:K近邻非参数回归预测模型能较为准确的进行道路短期交通流预测,该方法可用于短期交通流预测。
关键词 短期交通流预测 非参数回归 k近邻
下载PDF
基于改进kNN算法的人脸识别研究 被引量:4
13
作者 甘守飞 《佛山科学技术学院学报(自然科学版)》 CAS 2015年第3期52-55,共4页
通过分析人脸识别流程和结构设计分析得出分类算法的选择决定着人脸识别结果质量;从而对经典k NN算法进行分析,提出了一种动态取得k值的改进k NN分类算法。通过实验测试,证明改进的k NN分类算法可以有效地提高识别精度的稳定性。
关键词 人脸识别 特征提取 k-邻近
下载PDF
基于改进K-近邻规则的数据库营销分析 被引量:1
14
作者 王昱 朱芝孺 《统计与决策》 CSSCI 北大核心 2018年第19期175-178,共4页
文章提出一种基于改进K-近邻规则的数据库营销模型。根据数据样本的近邻信息动态确定其最优的近邻个数K,以避免人为设定K这一重要参数可能造成的影响。根据K个近邻距样本的距离,设定不同的投票权重以预测样本属于某一类别的概率。在实... 文章提出一种基于改进K-近邻规则的数据库营销模型。根据数据样本的近邻信息动态确定其最优的近邻个数K,以避免人为设定K这一重要参数可能造成的影响。根据K个近邻距样本的距离,设定不同的投票权重以预测样本属于某一类别的概率。在实际数据集上的实证结果表明,提出的改进K-近邻规则不仅为K值设定提供了一种有效的方法,还能够提高数据库营销的准确性和结果的可解释性,可以有效应用于实际的数据库营销。 展开更多
关键词 k-近邻规则 近邻信息 数据库营销
下载PDF
基于TSNS和KNN规则的复杂多阶段过程故障检测 被引量:2
15
作者 李元 耿焱 冯立伟 《化工自动化及仪表》 CAS 2022年第1期20-26,35,共8页
针对复杂工业过程数据的动态性、非线性和多阶段性等特征,提出基于时空近邻标准化和KNN规则(Time-Space Nearest Neighborhood Standardization and K Nearest Neighbor Rule,TSNS-KNN)的复杂多阶段过程故障检测方法。首先使用训练样本... 针对复杂工业过程数据的动态性、非线性和多阶段性等特征,提出基于时空近邻标准化和KNN规则(Time-Space Nearest Neighborhood Standardization and K Nearest Neighbor Rule,TSNS-KNN)的复杂多阶段过程故障检测方法。首先使用训练样本在时间和空间域上的两层嵌套近邻集的统计信息对样本预处理,然后将标准样本的累积近邻距离作为检测统计量进行故障检测。TSNS-KNN在排除非线性干扰的同时,消除了前后时刻样本间的动态相关性,将多阶段数据转换为单阶段数据,从而实现对复杂多阶段过程的检测。将该方法运用于数值实验和青霉素发酵过程,并与其他方法进行比较,对比结果进一步验证了TSNS-KNN方法的优越性。 展开更多
关键词 时空近邻标准化 k近邻 动态性 多阶段过程 故障检测
下载PDF
基于邻域粗糙集与KNN的网络入侵检测 被引量:3
16
作者 赵晖 《河南科学》 2013年第9期1404-1408,共5页
入侵检测数据中存在噪音属性及部分连续型属性,并具有高维、非线性特征,为了取得更好的检测效果,首先利用邻域粗糙集对数据集进行属性约简,消除冗余属性与噪声,避免了传统粗糙集在连续型属性离散化过程中带来的信息损失;然后采用KNN算... 入侵检测数据中存在噪音属性及部分连续型属性,并具有高维、非线性特征,为了取得更好的检测效果,首先利用邻域粗糙集对数据集进行属性约简,消除冗余属性与噪声,避免了传统粗糙集在连续型属性离散化过程中带来的信息损失;然后采用KNN算法进行异常数据的识别与检测.仿真实验结果表明,该算法能有效提升入侵检测的精度,具有较高的泛化性和稳定性. 展开更多
关键词 入侵检测 属性约简 邻域粗糙集 k最近邻算法
下载PDF
SVM-KNN分类算法研究 被引量:3
17
作者 赵玲 陈磊琛 +1 位作者 余小陆 张盛意 《计算机与数字工程》 2010年第6期29-31,134,共4页
SVM-KNN分类算法是一种将支持向量机(SVM)分类和最近邻(NN)分类相结合的新分类方法。针对传统SVM分类器中存在的问题,该算法通过支持向量机的序列最小优化(SMO)训练算法对数据集进行训练,将距离差小于给定阈值的样本代入以每类所有的支... SVM-KNN分类算法是一种将支持向量机(SVM)分类和最近邻(NN)分类相结合的新分类方法。针对传统SVM分类器中存在的问题,该算法通过支持向量机的序列最小优化(SMO)训练算法对数据集进行训练,将距离差小于给定阈值的样本代入以每类所有的支持向量作为代表点的K近邻分类器中进行分类。在UCI数据集上的实验结果表明,该分类器的分类准确率比单纯使用SVM分类器要高,它在一定程度上不受核函数参数选择的影响,具有较好的稳健性。 展开更多
关键词 支持向量机 k近邻 样本相似性
下载PDF
改进的k最邻近算法在海量数据挖掘中的应用 被引量:11
18
作者 黄文秀 唐超尘 +1 位作者 神显豪 周术诚 《济南大学学报(自然科学版)》 CAS 北大核心 2021年第1期24-28,共5页
为了提高数据挖掘的效率与准确性,将k最邻近算法与样本均衡策略相结合,在海量数据挖掘中进行应用;首先对样本集文本进行分析,找出样本领域的密集分布区域,对样本密集区域进行有效裁剪优化,实现样本分布均衡,然后对经过样本均衡处理的数... 为了提高数据挖掘的效率与准确性,将k最邻近算法与样本均衡策略相结合,在海量数据挖掘中进行应用;首先对样本集文本进行分析,找出样本领域的密集分布区域,对样本密集区域进行有效裁剪优化,实现样本分布均衡,然后对经过样本均衡处理的数据样本执行传统k最邻近算法,根据权重获得分类结果,最后对不同k值的k最邻近算法进行实例仿真。结果表明,在相同的数据样本环境中,相比于其他分类算法,采用改进的k最邻近算法的分类准确度和分类效率更高。 展开更多
关键词 数据挖掘 样本优化 k最邻近算法 样本均衡 邻域密集区域
下载PDF
近邻成分分析和k近邻学习融合的变压器不平衡样本故障诊断 被引量:23
19
作者 李雅欣 侯慧娟 +3 位作者 张立静 胥明凯 盛戈皞 江秀臣 《高电压技术》 EI CAS CSCD 北大核心 2021年第2期472-479,共8页
在基于机器学习的电力变压器故障诊断方法中,各故障类别间案例数量不平衡会导致诊断准确率降低。为了提升电力变压器故障诊断模型的准确率及运行效率,构建了融合引入修正因子的近邻成分分析和k近邻学习的故障诊断模型。首先,通过对近邻... 在基于机器学习的电力变压器故障诊断方法中,各故障类别间案例数量不平衡会导致诊断准确率降低。为了提升电力变压器故障诊断模型的准确率及运行效率,构建了融合引入修正因子的近邻成分分析和k近邻学习的故障诊断模型。首先,通过对近邻成分分析算法(neighborhood component analysis,NCA)目标函数引入修正因子减少样本不均衡对模型训练的影响,结合油色谱故障数据通过关联规则得到样本参量相关性量化矩阵,作为NCA算法训练度量矩阵的初值;然后,利用训练得到的度量矩阵对k近邻(k-nearest neighbors,k NN)分类器的输入数据结果进行映射变换,使同类型样本间的距离减小,进而使k NN分类性能提高;最后,用贝叶斯优化算法对模型进行超参数调优,获得能使测试集准确率最高的模型参数集。以变压器故障案例库为对象的算例分析结果表明,提出的模型与传统的机器学习诊断模型相比,用时节省了近一半,且所提模型对少数样本类的诊断准确率相比于其它模型提升了至少15%。论文研究可为电力变压器的故障诊断提供参考。 展开更多
关键词 故障诊断 近邻成分分析 度量学习 k近邻 贝叶斯优化 变压器
下载PDF
基于堆和邻域共存信息的KNN相似图算法 被引量:1
20
作者 王颖 杨余旺 《计算机科学》 CSCD 北大核心 2018年第5期196-200,227,共6页
在谱聚类算法中,相似图的构造至关重要,对整个算法的聚类结果和运行效率都有着巨大影响。为了加快谱聚类的运算速度和通过近邻截断提高其性能,通常选择K近邻(KNN)方法来构造稀疏的相似图,而K近邻图对离群点非常敏感,这种噪声边会严重影... 在谱聚类算法中,相似图的构造至关重要,对整个算法的聚类结果和运行效率都有着巨大影响。为了加快谱聚类的运算速度和通过近邻截断提高其性能,通常选择K近邻(KNN)方法来构造稀疏的相似图,而K近邻图对离群点非常敏感,这种噪声边会严重影响聚类算法的性能。文中提出了一种新的高效稀疏亲和图构造方法 HCKNN,其中基于堆的K近邻搜索比基于排序的近邻选择在效率方面提升了log(n),基于邻域共存累计的阈值化来进行邻域约减不仅能够去除噪声边以提高聚类性能,还能进一步稀疏化相似矩阵,从而加速谱聚类中的特征分解。 展开更多
关键词 谱聚类 相似图 稀疏k近邻
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部