With the increase in IoT(Internet of Things)devices comes an inherent challenge of security.In the world today,privacy is the prime concern of every individual.Preserving one’s privacy and keeping anonymity throughou...With the increase in IoT(Internet of Things)devices comes an inherent challenge of security.In the world today,privacy is the prime concern of every individual.Preserving one’s privacy and keeping anonymity throughout the system is a desired functionality that does not come without inevitable trade-offs like scalability and increased complexity and is always exceedingly difficult to manage.The challenge is keeping confidentiality and continuing to make the person innominate throughout the system.To address this,we present our proposed architecture where we manage IoT devices using blockchain technology.Our proposed architecture works on and off blockchain integrated with the closed-circuit television(CCTV)security camera fixed at the rental property.In this framework,the CCTV security camera feed is redirected towards the owner and renter based on the smart contract conditions.One entity(owner or renter)can see the CCTV security camera feed at one time.There is no third-party dependence except for the CCTV security camera deployment phase.Our contributions include the proposition of framework architecture,a novel smart contract algorithm,and the modification to the ring signatures leveraging an existing cryptographic technique.Analyses are made based on different systems’security and key management areas.In an empirical study,our proposed algorithm performed better in key generation,proof generation,and verification times.By comparing similar existing schemes,we have shown the proposed architectures’advantages.Until now,we have developed this system for a specific area in the real world.However,this system is scalable and applicable to other areas like healthcare monitoring systems,which is part of our future work.展开更多
In recent years,mobile Internet technology and location based services have wide application.Application providers and users have accumulated huge amount of trajectory data.While publishing and analyzing user trajecto...In recent years,mobile Internet technology and location based services have wide application.Application providers and users have accumulated huge amount of trajectory data.While publishing and analyzing user trajectory data have brought great convenience for people,the disclosure risks of user privacy caused by the trajectory data publishing are also becoming more and more prominent.Traditional k-anonymous trajectory data publishing technologies cannot effectively protect user privacy against attackers with strong background knowledge.For privacy preserving trajectory data publishing,we propose a differential privacy based(k-Ψ)-anonymity method to defend against re-identification and probabilistic inference attack.The proposed method is divided into two phases:in the first phase,a dummy-based(k-Ψ)-anonymous trajectory data publishing algorithm is given,which improves(k-δ)-anonymity by considering changes of thresholdδon different road segments and constructing an adaptive threshold setΨthat takes into account road network information.In the second phase,Laplace noise regarding distance of anonymous locations under differential privacy is used for trajectory perturbation of the anonymous trajectory dataset outputted by the first phase.Experiments on real road network dataset are performed and the results show that the proposed method improves the trajectory indistinguishability and achieves good data utility in condition of preserving user privacy.展开更多
Mobile devices with global positioning capabilities allow users to retrieve points of interest (POI) in their proximity. Due to the nature of spatial queries, location-based service (LBS) needs the user position in or...Mobile devices with global positioning capabilities allow users to retrieve points of interest (POI) in their proximity. Due to the nature of spatial queries, location-based service (LBS) needs the user position in order to process requests. On the other hand, revealing exact user locations to LBS may pinpoint their identities and breach their privacy. Spatial K-anonymity (SKA) exploits the concept of K-anonymity in order to protect the identity of users from location-based attacks. However, existing reciprocal methods rely on a specialized data structure. In contrast, a reciprocal algorithm was proposed using existing spatial index on the user locations. At the same time, an adjusted median splits algorithm was provided. Finally, according to effectiveness (i.e., anonymizing spatial region size) and efficiency (i.e., construction cost), the experimental results verify that the proposed methods have better performance. Moreover, since using employ general-purpose spatial indices, the proposed method supports conventional spatial queries as well.展开更多
The aim of this paper is to focus on the ethical issues raised by the removal of anonymity from sperm donors. The increasing currency of a 'right to genetic truth' is clearly visible in the drive to revise the legis...The aim of this paper is to focus on the ethical issues raised by the removal of anonymity from sperm donors. The increasing currency of a 'right to genetic truth' is clearly visible in the drive to revise the legislation on donor anonymity in Western and European countries. The ethical debate is polarized between the 'right to privacy' of the donor or parent and the 'right to know' of the prospective child. However, it is evident that religious, social and cultural attitudes have an overarching impact on attitudes towards sperm donation generally and anonymity specifically. In Asian countries, the social and cultural heritage is hugely diverse and different from those of the West. This review considers the research exploring the complexity of ethical issues informing this debate, and argues that parent's decisions to reveal donor insemination origins to their children are highly complex and relate to a range of social and cultural attitudes that have not been addressed within the policy to remove anonymity from sperm donors.展开更多
Blockchain is a technology that uses community validation to keep synchronized the content of ledgers replicated across multiple users,which is the underlying technology of digital currency like bitcoin.The anonymity ...Blockchain is a technology that uses community validation to keep synchronized the content of ledgers replicated across multiple users,which is the underlying technology of digital currency like bitcoin.The anonymity of blockchain has caused widespread concern.In this paper,we put forward AABN,an Anonymity Assessment model based on Bayesian Network.Firstly,we investigate and analyze the anonymity assessment techniques,and focus on typical anonymity assessment schemes.Then the related concepts involved in the assessment model are introduced and the model construction process is described in detail.Finally,the anonymity in the MIX anonymous network is quantitatively evaluated using the methods of accurate reasoning and approximate reasoning respectively,and the anonymity assessment experiments under different output strategies of the MIX anonymous network are analyzed.展开更多
In cyberspace security,the privacy in location-based services(LBSs) becomes more critical. In previous solutions,a trusted third party(TTP) was usually employed to provide disturbance or obfuscation,but it may become ...In cyberspace security,the privacy in location-based services(LBSs) becomes more critical. In previous solutions,a trusted third party(TTP) was usually employed to provide disturbance or obfuscation,but it may become the single point of failure or service bottleneck. In order to cope with this drawback,we focus on another important class,establishing anonymous group through short-range communication to achieve k-anonymity with collaborative users. Along with the analysis of existing algorithms,we found users in the group must share the same maximum anonymity degree,and they could not ease the process of preservation in a lower one. To cope with this problem,we proposed a random-QBE algorithm to put up with personalized anonymity in user collaboration algorithms,and this algorithm could preserve both query privacy and location privacy. Then we studied the attacks from passive and active adversaries and used entropy to measure user's privacy level. Finally,experimental evaluations further verify its effectiveness and efficiency.展开更多
Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity atta...Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity attack and the similarity attack. This paper proposes a novel model, (w,γ, k)-anonymity, to avoid generality attacks on both cases of numeric and categorical attributes. We show that the optimal (w, γ, k)-anonymity problem is NP-hard and conduct the Top-down Local recoding (TDL) algorithm to implement the model. Our experiments validate the improvement of our model with real data.展开更多
基金This work was supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)under the Artificial Intelligence Convergence Innovation Human Resources Development(IITP-2023-RS-2023-00255968)Grantthe ITRC(Information Technology Research Center)Support Program(IITP-2021-0-02051)funded by theKorea government(MSIT).
文摘With the increase in IoT(Internet of Things)devices comes an inherent challenge of security.In the world today,privacy is the prime concern of every individual.Preserving one’s privacy and keeping anonymity throughout the system is a desired functionality that does not come without inevitable trade-offs like scalability and increased complexity and is always exceedingly difficult to manage.The challenge is keeping confidentiality and continuing to make the person innominate throughout the system.To address this,we present our proposed architecture where we manage IoT devices using blockchain technology.Our proposed architecture works on and off blockchain integrated with the closed-circuit television(CCTV)security camera fixed at the rental property.In this framework,the CCTV security camera feed is redirected towards the owner and renter based on the smart contract conditions.One entity(owner or renter)can see the CCTV security camera feed at one time.There is no third-party dependence except for the CCTV security camera deployment phase.Our contributions include the proposition of framework architecture,a novel smart contract algorithm,and the modification to the ring signatures leveraging an existing cryptographic technique.Analyses are made based on different systems’security and key management areas.In an empirical study,our proposed algorithm performed better in key generation,proof generation,and verification times.By comparing similar existing schemes,we have shown the proposed architectures’advantages.Until now,we have developed this system for a specific area in the real world.However,this system is scalable and applicable to other areas like healthcare monitoring systems,which is part of our future work.
基金supported by the Fundamental Research Funds for the Central Universities(No.GK201906009)CERNET Innovation Project(No.NGII20190704)Science and Technology Program of Xi’an City(No.2019216914GXRC005CG006-GXYD5.2).
文摘In recent years,mobile Internet technology and location based services have wide application.Application providers and users have accumulated huge amount of trajectory data.While publishing and analyzing user trajectory data have brought great convenience for people,the disclosure risks of user privacy caused by the trajectory data publishing are also becoming more and more prominent.Traditional k-anonymous trajectory data publishing technologies cannot effectively protect user privacy against attackers with strong background knowledge.For privacy preserving trajectory data publishing,we propose a differential privacy based(k-Ψ)-anonymity method to defend against re-identification and probabilistic inference attack.The proposed method is divided into two phases:in the first phase,a dummy-based(k-Ψ)-anonymous trajectory data publishing algorithm is given,which improves(k-δ)-anonymity by considering changes of thresholdδon different road segments and constructing an adaptive threshold setΨthat takes into account road network information.In the second phase,Laplace noise regarding distance of anonymous locations under differential privacy is used for trajectory perturbation of the anonymous trajectory dataset outputted by the first phase.Experiments on real road network dataset are performed and the results show that the proposed method improves the trajectory indistinguishability and achieves good data utility in condition of preserving user privacy.
基金National Natural Science Foundation of China(No.61070032)
文摘Mobile devices with global positioning capabilities allow users to retrieve points of interest (POI) in their proximity. Due to the nature of spatial queries, location-based service (LBS) needs the user position in order to process requests. On the other hand, revealing exact user locations to LBS may pinpoint their identities and breach their privacy. Spatial K-anonymity (SKA) exploits the concept of K-anonymity in order to protect the identity of users from location-based attacks. However, existing reciprocal methods rely on a specialized data structure. In contrast, a reciprocal algorithm was proposed using existing spatial index on the user locations. At the same time, an adjusted median splits algorithm was provided. Finally, according to effectiveness (i.e., anonymizing spatial region size) and efficiency (i.e., construction cost), the experimental results verify that the proposed methods have better performance. Moreover, since using employ general-purpose spatial indices, the proposed method supports conventional spatial queries as well.
文摘依据FFT→优化窗→IFFT思路,突破线性时频变换的窗函数积分性能桎梏,实现高性能优化窗函数的线性时频变换应用,建立新型时频变换算法——K-S变换.对信号x(t)的FFT频谱向量进行频移处理后,与该频移点下Kaiser优化窗的频谱向量进行Hadamard乘积,再将乘积结果进行FFT逆变换(IFFT),构造出K-S变换复时频矩阵,由此获得x(t)的时间-频率-幅值、时间-频率-相位三维信息;给出逆变换的数学推导与局部性质、线性性质和变分辨率特性;0~150 kHz电网的稳态与时变超谐波信号仿真实验表明,K-S变换的时域、频域分辨能力均优于流行的短时傅里叶变换、S变换,具有优良的变分辨率性能;0~40 kHz超谐波信号的实测证明,基于K-S变换的超谐波电压幅值测量绝对误差均小于0.032 3 V.
文摘The aim of this paper is to focus on the ethical issues raised by the removal of anonymity from sperm donors. The increasing currency of a 'right to genetic truth' is clearly visible in the drive to revise the legislation on donor anonymity in Western and European countries. The ethical debate is polarized between the 'right to privacy' of the donor or parent and the 'right to know' of the prospective child. However, it is evident that religious, social and cultural attitudes have an overarching impact on attitudes towards sperm donation generally and anonymity specifically. In Asian countries, the social and cultural heritage is hugely diverse and different from those of the West. This review considers the research exploring the complexity of ethical issues informing this debate, and argues that parent's decisions to reveal donor insemination origins to their children are highly complex and relate to a range of social and cultural attitudes that have not been addressed within the policy to remove anonymity from sperm donors.
基金supported by the following grants:the National Natural Science Foundation of China under Grant No.61170273the China Scholarship Council under Grant No.[2013]3050+1 种基金CCF-Tencent Open Fund WeBank Special Fuding(CCF-WebankRAGR20180104)the Beijing Natural Science Foundation(4194086)
文摘Blockchain is a technology that uses community validation to keep synchronized the content of ledgers replicated across multiple users,which is the underlying technology of digital currency like bitcoin.The anonymity of blockchain has caused widespread concern.In this paper,we put forward AABN,an Anonymity Assessment model based on Bayesian Network.Firstly,we investigate and analyze the anonymity assessment techniques,and focus on typical anonymity assessment schemes.Then the related concepts involved in the assessment model are introduced and the model construction process is described in detail.Finally,the anonymity in the MIX anonymous network is quantitatively evaluated using the methods of accurate reasoning and approximate reasoning respectively,and the anonymity assessment experiments under different output strategies of the MIX anonymous network are analyzed.
基金supported by the National Natural Science Foundation of China (Grant No.61472097)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20132304110017)+1 种基金the Natural Science Foundation of Heilongjiang Province of China (Grant No.F2015022)the Fujian Provincial Key Laboratory of Network Security and Cryptology Research Fund (Fujian Normal University) (No.15003)
文摘In cyberspace security,the privacy in location-based services(LBSs) becomes more critical. In previous solutions,a trusted third party(TTP) was usually employed to provide disturbance or obfuscation,but it may become the single point of failure or service bottleneck. In order to cope with this drawback,we focus on another important class,establishing anonymous group through short-range communication to achieve k-anonymity with collaborative users. Along with the analysis of existing algorithms,we found users in the group must share the same maximum anonymity degree,and they could not ease the process of preservation in a lower one. To cope with this problem,we proposed a random-QBE algorithm to put up with personalized anonymity in user collaboration algorithms,and this algorithm could preserve both query privacy and location privacy. Then we studied the attacks from passive and active adversaries and used entropy to measure user's privacy level. Finally,experimental evaluations further verify its effectiveness and efficiency.
基金supported in part by Research Fund for the Doctoral Program of Higher Education of China(No.20120009110007)Program for Innovative Research Team in University of Ministry of Education of China (No.IRT201206)+3 种基金Program for New Century Excellent Talents in University(NCET-110565)the Fundamental Research Funds for the Central Universities(No.2012JBZ010)the Open Project Program of Beijing Key Laboratory of Trusted Computing at Beijing University of TechnologyBeijing Higher Education Young Elite Teacher Project(No. YETP0542)
文摘Privacy-preserving data publishing (PPDP) is one of the hot issues in the field of the network security. The existing PPDP technique cannot deal with generality attacks, which explicitly contain the sensitivity attack and the similarity attack. This paper proposes a novel model, (w,γ, k)-anonymity, to avoid generality attacks on both cases of numeric and categorical attributes. We show that the optimal (w, γ, k)-anonymity problem is NP-hard and conduct the Top-down Local recoding (TDL) algorithm to implement the model. Our experiments validate the improvement of our model with real data.