A star forest is a forest whose components are stars. The star arboricity of a graph G,denoted by sa( G),is the minimum number of star forests needed to decompose G. Let k be a positive integer. A k-star forest is a...A star forest is a forest whose components are stars. The star arboricity of a graph G,denoted by sa( G),is the minimum number of star forests needed to decompose G. Let k be a positive integer. A k-star forest is a forest whose components are stars of order at most k + 1. The k-star arboricity of a graph G,denoted by sak( G),is the minimum number of k-star forests needed to decompose G. In this paper,it is proved that if any two vertices of degree 3 are nonadjacent in a subcubic graph G then sa2( G) ≤2.For general subcubic graphs G, a polynomial-time algorithm is described to decompose G into three 2-star forests. For a tree T and[Δ k, T)/k]t≤ sak( T) ≤[Δ( T)- 1/K]+1,where Δ( T) is the maximum degree of T.kMoreover,a linear-time algorithm is designed to determine whether sak( T) ≤m for any tree T and any positive integers m and k.展开更多
基金National Natural Science Foundation of China(No.10971025)
文摘A star forest is a forest whose components are stars. The star arboricity of a graph G,denoted by sa( G),is the minimum number of star forests needed to decompose G. Let k be a positive integer. A k-star forest is a forest whose components are stars of order at most k + 1. The k-star arboricity of a graph G,denoted by sak( G),is the minimum number of k-star forests needed to decompose G. In this paper,it is proved that if any two vertices of degree 3 are nonadjacent in a subcubic graph G then sa2( G) ≤2.For general subcubic graphs G, a polynomial-time algorithm is described to decompose G into three 2-star forests. For a tree T and[Δ k, T)/k]t≤ sak( T) ≤[Δ( T)- 1/K]+1,where Δ( T) is the maximum degree of T.kMoreover,a linear-time algorithm is designed to determine whether sak( T) ≤m for any tree T and any positive integers m and k.