期刊文献+
共找到11,812篇文章
< 1 2 250 >
每页显示 20 50 100
CONVEXITY OF THE FREE BOUNDARY FOR AN AXISYMMETRIC INCOMPRESSIBLE IMPINGING JET
1
作者 王晓慧 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期234-246,共13页
This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provi... This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provided that the uneven ground is concave to the fluid. 展开更多
关键词 Euler system axisymmetric impinging jet INCOMPRESSIBLE free boundary CONVEXITY
下载PDF
On the Application of Mixed Models of Probability and Convex Set for Time-Variant Reliability Analysis
2
作者 Fangyi Li Dachang Zhu Huimin Shi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1981-1999,共19页
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems... In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem. 展开更多
关键词 Mixed uncertainty probability model convex model time-variant reliability analysis
下载PDF
General Lyapunov Stability and Its Application to Time-Varying Convex Optimization
3
作者 Zhibao Song Ping Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第11期2316-2326,共11页
In this article, a general Lyapunov stability theory of nonlinear systems is put forward and it contains asymptotic/finite-time/fast finite-time/fixed-time stability. Especially, a more accurate estimate of the settli... In this article, a general Lyapunov stability theory of nonlinear systems is put forward and it contains asymptotic/finite-time/fast finite-time/fixed-time stability. Especially, a more accurate estimate of the settling-time function is exhibited for fixedtime stability, and it is still extraneous to the initial conditions.This can be applied to obtain less conservative convergence time of the practical systems without the information of the initial conditions. As an application, the given fixed-time stability theorem is used to resolve time-varying(TV) convex optimization problem.By the Newton's method, two classes of new dynamical systems are constructed to guarantee that the solution of the dynamic system can track to the optimal trajectory of the unconstrained and equality constrained TV convex optimization problems in fixed time, respectively. Without the exact knowledge of the time derivative of the cost function gradient, a fixed-time dynamical non-smooth system is established to overcome the issue of robust TV convex optimization. Two examples are provided to illustrate the effectiveness of the proposed TV convex optimization algorithms. Subsequently, the fixed-time stability theory is extended to the theories of predefined-time/practical predefined-time stability whose bound of convergence time can be arbitrarily given in advance, without tuning the system parameters. Under which, TV convex optimization problem is solved. The previous two examples are used to demonstrate the validity of the predefined-time TV convex optimization algorithms. 展开更多
关键词 Fixed-time stability nonlinear system predefined-time stability time-varying(TV)convex optimization
下载PDF
Distributed Stochastic Optimization with Compression for Non-Strongly Convex Objectives
4
作者 Xuanjie Li Yuedong Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期459-481,共23页
We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization p... We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios. 展开更多
关键词 Distributed stochastic optimization arbitrary compression fidelity non-strongly convex objective function
下载PDF
Relaxed Stability Criteria for Time-Delay Systems:A Novel Quadratic Function Convex Approximation Approach
5
作者 Shenquan Wang Wenchengyu Ji +2 位作者 Yulian Jiang Yanzheng Zhu Jian Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期996-1006,共11页
This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i... This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples. 展开更多
关键词 Equivalent reciprocal combination technique quadratic function convex approximation approach STABILITY timevarying delay
下载PDF
A function associated with spherically convex sets
6
作者 GUO Qi 《苏州科技大学学报(自然科学版)》 CAS 2024年第4期76-83,共8页
This paper introduced a kind of functions associated with spherically convex sets and discussed their basic properties.Finally,it proved the spherical convexity/concavity of these functions in lower dimensional cases,... This paper introduced a kind of functions associated with spherically convex sets and discussed their basic properties.Finally,it proved the spherical convexity/concavity of these functions in lower dimensional cases,which provides useful information for the essential characteristics of these functions determining spherically convex sets.The results obtained here are helpful in setting up a systematic spherical convexity theory. 展开更多
关键词 spherical convexity spherical support function spherical radial function canonical transformation
下载PDF
Accelerated Primal-Dual Projection Neurodynamic Approach With Time Scaling for Linear and Set Constrained Convex Optimization Problems
7
作者 You Zhao Xing He +1 位作者 Mingliang Zhou Tingwen Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1485-1498,共14页
The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on... The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments. 展开更多
关键词 Accelerated projection neurodynamic approach lin-ear and set constraints projection operators smooth and nonsmooth convex optimization time scaling.
下载PDF
ConGCNet:Convex geometric constructive neural network for Industrial Internet of Things
8
作者 Jing Nan Wei Dai +1 位作者 Chau Yuen Jinliang Ding 《Journal of Automation and Intelligence》 2024年第3期169-175,共7页
The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained n... The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained nature of IIoT devices and the extensive resource demands of AI has not yet been fully addressed with a comprehensive solution.Taking advantage of the lightweight constructive neural network(LightGCNet)in developing fast learner models for IIoT,a convex geometric constructive neural network with a low-complexity control strategy,namely,ConGCNet,is proposed in this article via convex optimization and matrix theory,which enhances the convergence rate and reduces the computational consumption in comparison with LightGCNet.Firstly,a low-complexity control strategy is proposed to reduce the computational consumption during the hidden parameters training process.Secondly,a novel output weights evaluated method based on convex optimization is proposed to guarantee the convergence rate.Finally,the universal approximation property of ConGCNet is proved by the low-complexity control strategy and convex output weights evaluated method.Simulation results,including four benchmark datasets and the real-world ore grinding process,demonstrate that ConGCNet effectively reduces computational consumption in the modelling process and improves the model’s convergence rate. 展开更多
关键词 Industrial Internet of Things Lightweight geometric constructive neural network Convex optimization RESOURCE-CONSTRAINED Matrix theory
下载PDF
Monolithic Convex Limiting for Legendre-Gauss-Lobatto Discontinuous Galerkin Spectral-Element Methods
9
作者 Andrés M.Rueda-Ramírez Benjamin Bolm +1 位作者 Dmitri Kuzmin Gregor J.Gassner 《Communications on Applied Mathematics and Computation》 EI 2024年第3期1860-1898,共39页
We extend the monolithic convex limiting(MCL)methodology to nodal discontinuous Galerkin spectral-element methods(DGSEMS).The use of Legendre-Gauss-Lobatto(LGL)quadrature endows collocated DGSEM space discretizations ... We extend the monolithic convex limiting(MCL)methodology to nodal discontinuous Galerkin spectral-element methods(DGSEMS).The use of Legendre-Gauss-Lobatto(LGL)quadrature endows collocated DGSEM space discretizations of nonlinear hyperbolic problems with properties that greatly simplify the design of invariant domain-preserving high-resolution schemes.Compared to many other continuous and discontinuous Galerkin method variants,a particular advantage of the LGL spectral operator is the availability of a natural decomposition into a compatible subcellflux discretization.Representing a highorder spatial semi-discretization in terms of intermediate states,we performflux limiting in a manner that keeps these states and the results of Runge-Kutta stages in convex invariant domains.In addition,local bounds may be imposed on scalar quantities of interest.In contrast to limiting approaches based on predictor-corrector algorithms,our MCL procedure for LGL-DGSEM yields nonlinearflux approximations that are independent of the time-step size and can be further modified to enforce entropy stability.To demonstrate the robustness of MCL/DGSEM schemes for the compressible Euler equations,we run simulations for challenging setups featuring strong shocks,steep density gradients,and vortex dominatedflows. 展开更多
关键词 Structure-preserving schemes Subcellflux limiting Monolithic convex limiting(MCL) Discontinuous Galerkin spectral-element methods(DGSEMS) Legendre-Gauss-Lobatto(LGL)nodes
下载PDF
K-drop凸空间中的性质(英文) 被引量:11
10
作者 魏文展 徐厚宝 《数学杂志》 CSCD 北大核心 2004年第2期168-172,共5页
为了阐明何为K 强光滑空间的对偶空间 ,本文定义了K drop凸空间并且讨论了该空间的一些性质。同时借助K 强光滑空间的一个等价定义 ,证明了K drop凸空间与K 强光滑空间是对偶空间。文章最后用单位圆的切片给出了K drop凸空间的一等价命... 为了阐明何为K 强光滑空间的对偶空间 ,本文定义了K drop凸空间并且讨论了该空间的一些性质。同时借助K 强光滑空间的一个等价定义 ,证明了K drop凸空间与K 强光滑空间是对偶空间。文章最后用单位圆的切片给出了K drop凸空间的一等价命题 ,进而建立了K drop凸空间与drop性之间的关系。 展开更多
关键词 BANACH空间 Kdrop凸性 drop性 非紧性测度
下载PDF
非凸时序差分低秩约束的人体运动捕获数据恢复算法
11
作者 胡文玉 彭绍婷 +1 位作者 郭震宇 黄慧英 《浙江大学学报(理学版)》 北大核心 2025年第1期146-158,共13页
人体运动捕获数据恢复问题旨在恢复缺少的运动标记点位置信息,同时消除噪声。现有基于低秩矩阵填充的恢复方法大多利用人体运动捕获数据矩阵的低秩性。然而,随着运动数据帧数的不断增加,低秩性可能不再满足。为更好地刻画运动数据的低秩... 人体运动捕获数据恢复问题旨在恢复缺少的运动标记点位置信息,同时消除噪声。现有基于低秩矩阵填充的恢复方法大多利用人体运动捕获数据矩阵的低秩性。然而,随着运动数据帧数的不断增加,低秩性可能不再满足。为更好地刻画运动数据的低秩性,提出一种联合Schatten-p范数和lq范数的非凸时序差分低秩约束(NTDLR)的人体运动捕获数据恢复算法。首先,将数据矩阵投影至时序差分空间,构造时序差分矩阵。其次,引入非凸Schatten-p范数,刻画数据时序差分矩阵的低秩性,同时引入非凸lq范数约束稀疏噪声项。再次,利用交替方向乘子法求解模型,采用Newton-Raphson迭代法求解子问题。最后,在CMU数据集和HDM05数据集上,将NTDLR与经典的TrNN、CaNN和IRNNL Lp算法进行了比较,结果表明,NTDLR算法的视觉效果更优,具有更好的恢复性能。 展开更多
关键词 人体运动捕获 矩阵补全 时序差分 Schatten-p范数 非凸优化
下载PDF
k-Drop凸空间的特征 被引量:2
12
作者 周文 巩万中 《数学研究》 CSCD 2009年第1期85-90,共6页
通过研究局部k-drop凸空间的一些性质,得出了k-drop凸性质与自反且k-严格凸是等价的,同时k-drop凸空间具有商遗传性.
关键词 k-drop凸 局部k-drop凸 商空间
下载PDF
K-Drop凸空间与局部K-Drop凸空间 被引量:2
13
作者 周文 巩万中 《应用泛函分析学报》 CSCD 2008年第4期373-377,共5页
引入了Banach空间的局部k-drop凸性质,研究了k-drop凸与局部k-drop凸的一些性质以及两者之间的关系,并用单位球的切片统一而简洁地处理了这两个性质.
关键词 k-drop凸 局部k-drop凸 k强凸
下载PDF
无线传感器网络基于凸规划的改进定位算法:Convex-PIT 被引量:14
14
作者 张翰 刘锋 《传感技术学报》 CAS CSCD 北大核心 2007年第5期1129-1133,共5页
定位技术是无线传感器网络的关键技术之一,为了提高无线传感器网络的定位精度,在Convex算法基础上提出了Convex-PIT算法.Convex-PIT算法通过引入锚节点构成的三角形进一步滤掉节点不可能存在的区域,缩小节点可能存在范围,提高定位精度.C... 定位技术是无线传感器网络的关键技术之一,为了提高无线传感器网络的定位精度,在Convex算法基础上提出了Convex-PIT算法.Convex-PIT算法通过引入锚节点构成的三角形进一步滤掉节点不可能存在的区域,缩小节点可能存在范围,提高定位精度.Convex-PIT算法增加了判断未知节点是否在锚节点组成的三角形内的计算量,但不需要增加节点的硬件条件和额外的功能.仿真结果表明,和Convex算法相比,Convex-PIT可以明显的提高定位精度,在锚节点的比例从10%增加到30%的过程中,定位精度提高幅度平均约15%. 展开更多
关键词 无线传感器网络 定位Convex质心
下载PDF
The Growth Theorem for Convex Maps on the Banach Space 被引量:7
15
作者 张文俊 董道珍 汪远征 《Chinese Quarterly Journal of Mathematics》 CSCD 1992年第2期84-87,共4页
In this paper,the growth theorem for convex maps on the Banach space is given, this is: ‖f(x)‖≤‖x‖/(1-‖x‖),x∈B the estimate is best possible for Hilbert space.
关键词 holomorphic maps convex maps Schwartz lemma Growth theorem
下载PDF
ECMWF参考大气谱模式在Convex320机上的发展 被引量:2
16
作者 陈嘉滨 舒静君 陈雄山 《高原气象》 CSCD 北大核心 1996年第4期490-495,共6页
将ECMWF预报模式移植到Convex320机上,修改了I/O结构,使得该模式在该机上顺利运行。在模式中引入了参考大气,计算了6个实例,取得了较好的结果。另外,在该模式上还试验了CXS格式,节省了计算时间。
关键词 谱模式 参考大气 Convex320机
下载PDF
无线传感器网络一种改进的convex定位算法 被引量:3
17
作者 范磊 刘锋 《无线电通信技术》 2007年第1期52-55,共4页
以convex(凸规划)定位算法为基础,针对range-free定位算法中anchor(已知节点)比例低带来的定位精度低、网络覆盖率低的问题,提出了二跳信息改进定位算法。该算法中,未知节点在通信中加入自身邻居anchor的ID和位置信息并发送给邻居节点,... 以convex(凸规划)定位算法为基础,针对range-free定位算法中anchor(已知节点)比例低带来的定位精度低、网络覆盖率低的问题,提出了二跳信息改进定位算法。该算法中,未知节点在通信中加入自身邻居anchor的ID和位置信息并发送给邻居节点,相应的邻居节点从中确定自己的二跳邻居anchor,并利用二跳邻居anchor的二跳通信范围来减小未知节点的可能存在区域,进而提高未知节点的定位精度。仿真表明,二跳信息改进定位算法在anchor节点比例较低情况下能有效提高定位精度,而在anchor节点比例较高时接近原convex算法定位精度,并且网络规模越大这种提高越显著。 展开更多
关键词 range—free定位算法 无线传感器网络 CONVEX
下载PDF
An Algorithm for Partitioning Polygons into Convex Parts 被引量:3
18
作者 周培德 《Journal of Beijing Institute of Technology》 EI CAS 1997年第4期67-72,共6页
An algorithm for partitioning arbitrary simple polygons into a number of convex parts was presented. The concave vertices were determined first, and then they were moved by using the method connecting the concave vert... An algorithm for partitioning arbitrary simple polygons into a number of convex parts was presented. The concave vertices were determined first, and then they were moved by using the method connecting the concave vertices with the vertices of falling into its region B,so that the primary polygon could be partitioned into two subpolygons. Finally, this method was applied recursively to the subpolygons until all the concave vertices were removed. This algorithm partitions the polygon into O(l) convex parts, its time complexity is max(O(n),O(l 2)) multiplications, where n is the number of vertices of the polygon and l is the number of the concave vertices. 展开更多
关键词 arbitrary polygon concave vertex convex polygon ALGORITHM
下载PDF
Necessary and Sufficient Conditions in Smooth Programming with Generalized Convexity 被引量:1
19
作者 孙清滢 叶留青 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第4期33-37,共5页
Hanson and Mond have grven sets of necessary and sufficient conditions for optimality in constrained optimization by introducing classes of generalized functions, called type Ⅰ functions. Recently, Bector definded un... Hanson and Mond have grven sets of necessary and sufficient conditions for optimality in constrained optimization by introducing classes of generalized functions, called type Ⅰ functions. Recently, Bector definded univex functions, a new class of functions that unifies several concepts of generalized convexity. In this paper, additional conditions are attached to the Kuhn Tucker conditions giving a set of conditions which are both necessary and sufficient for optimality in constrained optimization, under appropriate constraint qualifications. 展开更多
关键词 necessary and sufficient conditions generalized convexity nonlinear programming multiobjective programming type functions
下载PDF
一种多跳Convex和APIT的改进定位:HCAPIT 被引量:4
20
作者 李伟群 廖鹰 +1 位作者 齐欢 袁帅 《计算机工程与应用》 CSCD 2012年第5期63-65,共3页
针对定位算法中信标节点密度低带来的定位精度低以及定位覆盖率低的问题,提出一种基于多跳凸规划和PIT的定位算法HCAPIT。该算法利用未知节点的K跳邻居信标节点信息,采用最佳三角形内点测试法PIT估计未知节点可能存在区域,通过多跳Conve... 针对定位算法中信标节点密度低带来的定位精度低以及定位覆盖率低的问题,提出一种基于多跳凸规划和PIT的定位算法HCAPIT。该算法利用未知节点的K跳邻居信标节点信息,采用最佳三角形内点测试法PIT估计未知节点可能存在区域,通过多跳Convex对区域缩小,对节点进行定位。仿真结果表明改进的定位算法更适合信标节点密度低的网络。 展开更多
关键词 无线传感器网络 定位 凸规划 近似三角形内点测试法(APIT)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部