This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provi...This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provided that the uneven ground is concave to the fluid.展开更多
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems...In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.展开更多
In this article, a general Lyapunov stability theory of nonlinear systems is put forward and it contains asymptotic/finite-time/fast finite-time/fixed-time stability. Especially, a more accurate estimate of the settli...In this article, a general Lyapunov stability theory of nonlinear systems is put forward and it contains asymptotic/finite-time/fast finite-time/fixed-time stability. Especially, a more accurate estimate of the settling-time function is exhibited for fixedtime stability, and it is still extraneous to the initial conditions.This can be applied to obtain less conservative convergence time of the practical systems without the information of the initial conditions. As an application, the given fixed-time stability theorem is used to resolve time-varying(TV) convex optimization problem.By the Newton's method, two classes of new dynamical systems are constructed to guarantee that the solution of the dynamic system can track to the optimal trajectory of the unconstrained and equality constrained TV convex optimization problems in fixed time, respectively. Without the exact knowledge of the time derivative of the cost function gradient, a fixed-time dynamical non-smooth system is established to overcome the issue of robust TV convex optimization. Two examples are provided to illustrate the effectiveness of the proposed TV convex optimization algorithms. Subsequently, the fixed-time stability theory is extended to the theories of predefined-time/practical predefined-time stability whose bound of convergence time can be arbitrarily given in advance, without tuning the system parameters. Under which, TV convex optimization problem is solved. The previous two examples are used to demonstrate the validity of the predefined-time TV convex optimization algorithms.展开更多
We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization p...We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.展开更多
This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i...This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.展开更多
This paper introduced a kind of functions associated with spherically convex sets and discussed their basic properties.Finally,it proved the spherical convexity/concavity of these functions in lower dimensional cases,...This paper introduced a kind of functions associated with spherically convex sets and discussed their basic properties.Finally,it proved the spherical convexity/concavity of these functions in lower dimensional cases,which provides useful information for the essential characteristics of these functions determining spherically convex sets.The results obtained here are helpful in setting up a systematic spherical convexity theory.展开更多
The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on...The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments.展开更多
The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained n...The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained nature of IIoT devices and the extensive resource demands of AI has not yet been fully addressed with a comprehensive solution.Taking advantage of the lightweight constructive neural network(LightGCNet)in developing fast learner models for IIoT,a convex geometric constructive neural network with a low-complexity control strategy,namely,ConGCNet,is proposed in this article via convex optimization and matrix theory,which enhances the convergence rate and reduces the computational consumption in comparison with LightGCNet.Firstly,a low-complexity control strategy is proposed to reduce the computational consumption during the hidden parameters training process.Secondly,a novel output weights evaluated method based on convex optimization is proposed to guarantee the convergence rate.Finally,the universal approximation property of ConGCNet is proved by the low-complexity control strategy and convex output weights evaluated method.Simulation results,including four benchmark datasets and the real-world ore grinding process,demonstrate that ConGCNet effectively reduces computational consumption in the modelling process and improves the model’s convergence rate.展开更多
We extend the monolithic convex limiting(MCL)methodology to nodal discontinuous Galerkin spectral-element methods(DGSEMS).The use of Legendre-Gauss-Lobatto(LGL)quadrature endows collocated DGSEM space discretizations ...We extend the monolithic convex limiting(MCL)methodology to nodal discontinuous Galerkin spectral-element methods(DGSEMS).The use of Legendre-Gauss-Lobatto(LGL)quadrature endows collocated DGSEM space discretizations of nonlinear hyperbolic problems with properties that greatly simplify the design of invariant domain-preserving high-resolution schemes.Compared to many other continuous and discontinuous Galerkin method variants,a particular advantage of the LGL spectral operator is the availability of a natural decomposition into a compatible subcellflux discretization.Representing a highorder spatial semi-discretization in terms of intermediate states,we performflux limiting in a manner that keeps these states and the results of Runge-Kutta stages in convex invariant domains.In addition,local bounds may be imposed on scalar quantities of interest.In contrast to limiting approaches based on predictor-corrector algorithms,our MCL procedure for LGL-DGSEM yields nonlinearflux approximations that are independent of the time-step size and can be further modified to enforce entropy stability.To demonstrate the robustness of MCL/DGSEM schemes for the compressible Euler equations,we run simulations for challenging setups featuring strong shocks,steep density gradients,and vortex dominatedflows.展开更多
In this paper,the growth theorem for convex maps on the Banach space is given, this is: ‖f(x)‖≤‖x‖/(1-‖x‖),x∈B the estimate is best possible for Hilbert space.
An algorithm for partitioning arbitrary simple polygons into a number of convex parts was presented. The concave vertices were determined first, and then they were moved by using the method connecting the concave vert...An algorithm for partitioning arbitrary simple polygons into a number of convex parts was presented. The concave vertices were determined first, and then they were moved by using the method connecting the concave vertices with the vertices of falling into its region B,so that the primary polygon could be partitioned into two subpolygons. Finally, this method was applied recursively to the subpolygons until all the concave vertices were removed. This algorithm partitions the polygon into O(l) convex parts, its time complexity is max(O(n),O(l 2)) multiplications, where n is the number of vertices of the polygon and l is the number of the concave vertices.展开更多
Hanson and Mond have grven sets of necessary and sufficient conditions for optimality in constrained optimization by introducing classes of generalized functions, called type Ⅰ functions. Recently, Bector definded un...Hanson and Mond have grven sets of necessary and sufficient conditions for optimality in constrained optimization by introducing classes of generalized functions, called type Ⅰ functions. Recently, Bector definded univex functions, a new class of functions that unifies several concepts of generalized convexity. In this paper, additional conditions are attached to the Kuhn Tucker conditions giving a set of conditions which are both necessary and sufficient for optimality in constrained optimization, under appropriate constraint qualifications.展开更多
基金supported in part by the National Natural Science Foundation of China(12101088)the Natural Science Foundation of Sichuan Province(2022NSFSC1858)。
文摘This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provided that the uneven ground is concave to the fluid.
基金partially supported by the National Natural Science Foundation of China(52375238)Science and Technology Program of Guangzhou(202201020213,202201020193,202201010399)GZHU-HKUST Joint Research Fund(YH202109).
文摘In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.
基金supported in part by the National Natural Science Foundation of China(62203281)。
文摘In this article, a general Lyapunov stability theory of nonlinear systems is put forward and it contains asymptotic/finite-time/fast finite-time/fixed-time stability. Especially, a more accurate estimate of the settling-time function is exhibited for fixedtime stability, and it is still extraneous to the initial conditions.This can be applied to obtain less conservative convergence time of the practical systems without the information of the initial conditions. As an application, the given fixed-time stability theorem is used to resolve time-varying(TV) convex optimization problem.By the Newton's method, two classes of new dynamical systems are constructed to guarantee that the solution of the dynamic system can track to the optimal trajectory of the unconstrained and equality constrained TV convex optimization problems in fixed time, respectively. Without the exact knowledge of the time derivative of the cost function gradient, a fixed-time dynamical non-smooth system is established to overcome the issue of robust TV convex optimization. Two examples are provided to illustrate the effectiveness of the proposed TV convex optimization algorithms. Subsequently, the fixed-time stability theory is extended to the theories of predefined-time/practical predefined-time stability whose bound of convergence time can be arbitrarily given in advance, without tuning the system parameters. Under which, TV convex optimization problem is solved. The previous two examples are used to demonstrate the validity of the predefined-time TV convex optimization algorithms.
基金supported in part by the Shanghai Natural Science Foundation under the Grant 22ZR1407000.
文摘We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios.
基金the National Natural Science Foundation of China(62273058,U22A2045)the Key Science and Technology Projects of Jilin Province(20200401075GX)the Youth Science and Technology Innovation and Entrepreneurship Outstanding Talents Project of Jilin Province(20230508043RC)。
文摘This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.
文摘This paper introduced a kind of functions associated with spherically convex sets and discussed their basic properties.Finally,it proved the spherical convexity/concavity of these functions in lower dimensional cases,which provides useful information for the essential characteristics of these functions determining spherically convex sets.The results obtained here are helpful in setting up a systematic spherical convexity theory.
基金supported by the National Natural Science Foundation of China(62176218,62176027)the Fundamental Research Funds for the Central Universities(XDJK2020TY003)the Funds for Chongqing Talent Plan(cstc2024ycjh-bgzxm0082)。
文摘The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments.
文摘The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained nature of IIoT devices and the extensive resource demands of AI has not yet been fully addressed with a comprehensive solution.Taking advantage of the lightweight constructive neural network(LightGCNet)in developing fast learner models for IIoT,a convex geometric constructive neural network with a low-complexity control strategy,namely,ConGCNet,is proposed in this article via convex optimization and matrix theory,which enhances the convergence rate and reduces the computational consumption in comparison with LightGCNet.Firstly,a low-complexity control strategy is proposed to reduce the computational consumption during the hidden parameters training process.Secondly,a novel output weights evaluated method based on convex optimization is proposed to guarantee the convergence rate.Finally,the universal approximation property of ConGCNet is proved by the low-complexity control strategy and convex output weights evaluated method.Simulation results,including four benchmark datasets and the real-world ore grinding process,demonstrate that ConGCNet effectively reduces computational consumption in the modelling process and improves the model’s convergence rate.
文摘We extend the monolithic convex limiting(MCL)methodology to nodal discontinuous Galerkin spectral-element methods(DGSEMS).The use of Legendre-Gauss-Lobatto(LGL)quadrature endows collocated DGSEM space discretizations of nonlinear hyperbolic problems with properties that greatly simplify the design of invariant domain-preserving high-resolution schemes.Compared to many other continuous and discontinuous Galerkin method variants,a particular advantage of the LGL spectral operator is the availability of a natural decomposition into a compatible subcellflux discretization.Representing a highorder spatial semi-discretization in terms of intermediate states,we performflux limiting in a manner that keeps these states and the results of Runge-Kutta stages in convex invariant domains.In addition,local bounds may be imposed on scalar quantities of interest.In contrast to limiting approaches based on predictor-corrector algorithms,our MCL procedure for LGL-DGSEM yields nonlinearflux approximations that are independent of the time-step size and can be further modified to enforce entropy stability.To demonstrate the robustness of MCL/DGSEM schemes for the compressible Euler equations,we run simulations for challenging setups featuring strong shocks,steep density gradients,and vortex dominatedflows.
文摘In this paper,the growth theorem for convex maps on the Banach space is given, this is: ‖f(x)‖≤‖x‖/(1-‖x‖),x∈B the estimate is best possible for Hilbert space.
文摘An algorithm for partitioning arbitrary simple polygons into a number of convex parts was presented. The concave vertices were determined first, and then they were moved by using the method connecting the concave vertices with the vertices of falling into its region B,so that the primary polygon could be partitioned into two subpolygons. Finally, this method was applied recursively to the subpolygons until all the concave vertices were removed. This algorithm partitions the polygon into O(l) convex parts, its time complexity is max(O(n),O(l 2)) multiplications, where n is the number of vertices of the polygon and l is the number of the concave vertices.
文摘Hanson and Mond have grven sets of necessary and sufficient conditions for optimality in constrained optimization by introducing classes of generalized functions, called type Ⅰ functions. Recently, Bector definded univex functions, a new class of functions that unifies several concepts of generalized convexity. In this paper, additional conditions are attached to the Kuhn Tucker conditions giving a set of conditions which are both necessary and sufficient for optimality in constrained optimization, under appropriate constraint qualifications.