期刊文献+
共找到107,496篇文章
< 1 2 250 >
每页显示 20 50 100
An Improved Kernel K-Mean Cluster Method and Its Application in Fault Diagnosis of Roller Bearing 被引量:2
1
作者 Ling-Li Jiang Yu-Xiang Cao +1 位作者 Hua-Kui Yin Kong-Shu Deng 《Engineering(科研)》 2013年第1期44-49,共6页
For the kernel K-mean cluster method is run in an implicit feature space, the initial and iterative cluster centers cannot be defined explicitly. Against the deficiency of the initial cluster centers selected in the o... For the kernel K-mean cluster method is run in an implicit feature space, the initial and iterative cluster centers cannot be defined explicitly. Against the deficiency of the initial cluster centers selected in the original space discretionarily in the existing methods, this paper proposes a new method for ensuring the clustering center that virtual clustering centers are defined in the feature space by the original classification as the initial cluster centers and the iteration clustering centers are ensured by the further virtual classification. The improved method is used for fault diagnosis of roller bearing that achieves a good cluster and diagnosis result, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 IMPROVED KERNEL k-mean cluster FAULT Diagnosis ROLLER BEARING
下载PDF
Comprehensive K-Means Clustering
2
作者 Ethan Xiao 《Journal of Computer and Communications》 2024年第3期146-159,共14页
The k-means algorithm is a popular data clustering technique due to its speed and simplicity. However, it is susceptible to issues such as sensitivity to the chosen seeds, and inaccurate clusters due to poor initial s... The k-means algorithm is a popular data clustering technique due to its speed and simplicity. However, it is susceptible to issues such as sensitivity to the chosen seeds, and inaccurate clusters due to poor initial seeds, particularly in complex datasets or datasets with non-spherical clusters. In this paper, a Comprehensive K-Means Clustering algorithm is presented, in which multiple trials of k-means are performed on a given dataset. The clustering results from each trial are transformed into a five-dimensional data point, containing the scope values of the x and y coordinates of the clusters along with the number of points within that cluster. A graph is then generated displaying the configuration of these points using Principal Component Analysis (PCA), from which we can observe and determine the common clustering patterns in the dataset. The robustness and strength of these patterns are then examined by observing the variance of the results of each trial, wherein a different subset of the data keeping a certain percentage of original data points is clustered. By aggregating information from multiple trials, we can distinguish clusters that consistently emerge across different runs from those that are more sensitive or unlikely, hence deriving more reliable conclusions about the underlying structure of complex datasets. Our experiments show that our algorithm is able to find the most common associations between different dimensions of data over multiple trials, often more accurately than other algorithms, as well as measure stability of these clusters, an ability that other k-means algorithms lack. 展开更多
关键词 k-means clustering
下载PDF
光伏波动平抑下改进K-means的电池储能动态分组控制策略 被引量:1
3
作者 余洋 陆文韬 +3 位作者 陈东阳 刘霡 夏雨星 郑晓明 《电力系统保护与控制》 EI CSCD 北大核心 2024年第7期1-11,共11页
针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并... 针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。 展开更多
关键词 电池储能系统 波动平抑 功率分配 改进侏儒猫鼬优化算法 改进k-means聚类算法
下载PDF
基于K-means聚类和特征空间增强的噪声标签深度学习算法 被引量:1
4
作者 吕佳 邱小龙 《智能系统学报》 CSCD 北大核心 2024年第2期267-277,共11页
深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样... 深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样本集赋予伪标签。然而,错误的伪标签以及训练样本数量不足的问题仍然限制着噪声标签学习算法性能的提升。为解决上述问题,提出基于K-means聚类和特征空间增强的噪声标签深度学习算法。首先,该算法利用K-means聚类算法对干净样本集进行标签聚类,并根据噪声样本集与聚类中心的距离大小筛选出难以分类的噪声样本,以提高训练样本的质量;其次,使用mixup算法扩充干净样本集和噪声样本集,以增加训练样本的数量;最后,采用特征空间增强算法抑制mixup算法新生成的噪声样本,从而提高网络的分类准确率。并在CIFAR10、CIFAR100、MNIST和ANIMAL-10共4个数据集上试验验证了该算法的有效性。 展开更多
关键词 噪声标签学习 深度学习 半监督学习 机器学习 神经网络 k-meanS聚类 特征空间增强 mixup算法
下载PDF
基于改进K-means算法的物流配送中心选址研究 被引量:1
5
作者 姚佼 吴秀荣 +3 位作者 李皓 谢贝贝 王诗璇 梁益铭 《物流科技》 2024年第5期10-13,19,共5页
针对传统K-means算法需要主观设定K值及无法处理类别型数据问题,文章运用肘部法及轮廓系数法确定合理K值,对类别型数据采取独热编码(One-Hot Encoding)转换为可以处理的连续型数据,并将其运用到在物流配送中心选址中;并综合考虑多种类... 针对传统K-means算法需要主观设定K值及无法处理类别型数据问题,文章运用肘部法及轮廓系数法确定合理K值,对类别型数据采取独热编码(One-Hot Encoding)转换为可以处理的连续型数据,并将其运用到在物流配送中心选址中;并综合考虑多种类别的影响因素,构建了相应的影响因素指标体系,提出的模型能够识别输入数据的数值型及类别型数据,实现样本的有效聚类。相关的案例分析结果表明,相比传统K-means聚类,文章的改进K-means算法选址结果可使物流总成本降低8.76%,运营成本降低14.85%,固定成本降低8.09%,效果显著。 展开更多
关键词 物流配送中心选址 k-meanS聚类算法 肘部法 轮廓系数法 独热编码
下载PDF
基于改进K-means数据聚类算法的网络入侵检测 被引量:1
6
作者 黄俊萍 《成都工业学院学报》 2024年第2期58-62,97,共6页
随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算... 随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算法求取最优初始聚类中心,实现K-means数据聚类算法的改进;最后以计算得出的特征值为输入项,实现对网络入侵行为的精准检测。结果表明:K-means算法改进后较改进前的戴维森堡丁指数更小,均低于0.6,达到了改进目的。改进K-means算法各样本的准确率均高于90%,相对更高,检测时间均低于10 s,相对更少,说明该方法能够以高效率完成更准确的网络入侵检测。 展开更多
关键词 改进k-means数据聚类算法 防火墙日志 入侵检测特征 粒子群算法 网络入侵检测
下载PDF
基于改进K-means聚类和遗传算法的混合算法求解异构车辆路径问题
7
作者 吴麟麟 吕一鸣 +1 位作者 何美玲 韩珣 《物流技术》 2024年第7期48-62,共15页
由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时... 由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时间窗惩罚成本的混合整数规划模型。同时,提出了一种基于改进K-means聚类和遗传算法的混合算法对模型进行求解。实验仿真先求解不考虑时间窗的问题初步证明混合算法的有效性,再在带时间窗的问题中求解不同规模算例的单一及异构车型结果,以证明异构车型配送更优。最后,对该混合算法的求解结果与其他混合算法的求解结果进行对比分析,证明了混合算法的优越性。研究结果表明:该混合算法求解的异构车型结果优于单一车型,并且比其他混合算法求解的异构车型结果更优,异构车辆配送使用的配送车辆数更少,总成本也更低,该混合算法具有更好的效率和性能。 展开更多
关键词 异构车辆路径问题 改进k-means聚类算法 遗传算法 混合算法
下载PDF
管制扇区运行稳度K-means聚类与分析
8
作者 岳仁田 杨果果 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期98-104,共7页
为更好地分析管制扇区运行存在的稳定亚安全状态和不稳定亚安全状态,使用K-means算法划分超容比(ECR)、滞留度和飞行姿态混合比3个管制扇区运行稳度评价指标聚类,确定管制扇区运行稳度最佳等级划分;聚类分析单一指标,获得各等级对应的... 为更好地分析管制扇区运行存在的稳定亚安全状态和不稳定亚安全状态,使用K-means算法划分超容比(ECR)、滞留度和飞行姿态混合比3个管制扇区运行稳度评价指标聚类,确定管制扇区运行稳度最佳等级划分;聚类分析单一指标,获得各等级对应的指标阈值,结合熵权法计算的指标权重,遵循隶属度最大原则,获取各时间段的管制扇区运行稳度等级,构建管制扇区运行稳度综合评价模型;选取厦门01号扇区的实际飞行数据,从稳度和趋度2个角度更加全面地分析管制扇区运行态势。结果表明:管制扇区运行稳度等级划分为3类时效果最好;稳度受空中交通流和管制状况的影响会随时间而变化,尤其7:30—9:15和20:00—21:00这2个时间段管制扇区运行稳度的变化最为明显,需引起管制员高度重视,提高空域运行安全。 展开更多
关键词 管制扇区 运行稳度 趋度 k-meanS聚类 综合评价
下载PDF
基于蚁群算法的三支k-means聚类算法
9
作者 朱金 徐天杰 王平心 《江苏科技大学学报(自然科学版)》 CAS 2024年第3期63-69,共7页
在聚类分析中,三支k-means聚类算法较具有较强的处理边界不确定数据的能力,但仍然存在对初始聚类中心敏感的问题.通过将蚁群算法和三支k-means聚类算法相结合,给出了一种基于蚁群算法的三支k-means聚类算法来解决这一问题.利用蚁群算法... 在聚类分析中,三支k-means聚类算法较具有较强的处理边界不确定数据的能力,但仍然存在对初始聚类中心敏感的问题.通过将蚁群算法和三支k-means聚类算法相结合,给出了一种基于蚁群算法的三支k-means聚类算法来解决这一问题.利用蚁群算法中随机概率选择策略和信息素的正负反馈机制,动态调整权重的方法,对三支k-means聚类算法进行优化.在UCI数据集上实验证明,该方法对聚类结果的性能指标有所提高. 展开更多
关键词 三支k-means k-meanS聚类算法 聚类中心 蚁群算法
下载PDF
基于k-means聚类算法的兴义维蚋幼虫龄数的估算
10
作者 赵娜 王毅 +4 位作者 杨曜铭 吴慧 修江帆 寻慧 杨明 《贵州医科大学学报》 CAS 2024年第8期1120-1127,共8页
目的探讨基于k-means聚类算法估算兴义维蚋幼虫的龄数,以明确虫龄与日龄及鳃斑发育阶段的关系。方法采集贵州青岩河流中兴义维蚋虫卵,于实验室的蚋类饲养系统中培育至幼虫,每日收集幼虫至大量化蛹,持续20 d;收集到幼虫1112头,于体视显... 目的探讨基于k-means聚类算法估算兴义维蚋幼虫的龄数,以明确虫龄与日龄及鳃斑发育阶段的关系。方法采集贵州青岩河流中兴义维蚋虫卵,于实验室的蚋类饲养系统中培育至幼虫,每日收集幼虫至大量化蛹,持续20 d;收集到幼虫1112头,于体视显微镜下测量头壳长(HCW)、后颊长(PGL)、上颚基横骨长(MPL)及体长(BL),观察不同虫龄幼虫的破卵器、鳃斑及性腺的形态学特征,并判断其龄期、分析虫龄与日龄和鳃斑发育关系;选取具有明显腮斑发育的兴义维蚋幼虫10头、制作石蜡切片,采用HE染色鉴定精巢和卵巢、辅助确认性别鉴定结果;采用k-means聚类方法划分形态计量学数据、利用Brooks-Dyar定律检测k-means聚类结果,R语言下行聚类与Brooks-Dyar定律检验、t检验等,根据拟合度分析判断兴义维蚋幼虫龄数。结果1112头兴义维蚋幼虫中有破卵器89头,出现鳃斑发育334头,6~7龄幼虫320头,有预蛹特征34头;Brooks-Dyar定律与破卵器、鳃斑形态特征显示7龄幼虫假设符合昆虫幼虫生长规律;组织学观察见幼虫精巢为椭圆形、体积大、外有几丁质层包裹,卵巢为长条形、体积小、后端有色素细胞包裹;鉴定6、7龄幼虫性别结果,仅7龄幼虫雌雄性PGL有差异(P<0.05);幼虫虫龄与日龄、鳃斑发育关系结果显示,约2~3 d对应1个幼虫生长龄期,第17天首见幼虫蛹化,6龄幼虫出现明显的鳃斑。结论兴义维蚋幼虫具7龄,实验室下幼虫发育约需3周,最短17 d;腮斑发育起始于6龄,7龄出现明显形态学特征。 展开更多
关键词 蚋科 组织学 性腺 龄数 形态计量学 k-meanS聚类
下载PDF
基于改进K-means聚类的轨道交通基础设施分布式光伏发电典型场景生成及出力特性分析
11
作者 陈凯 雷琪 李豆萌 《电气工程学报》 CSCD 北大核心 2024年第2期364-372,共9页
受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于... 受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于分布式光伏发电设施以及气象数据,利用PVsyst软件模拟光伏发电出力数据。然后,针对基本K-means聚类算法聚类参数和初始聚类中心盲目性高的问题,结合聚类有效性指标(Density based index,DBI)和层次聚类对其进行改进并利用改进K-means聚类算法生成光伏典型日出力场景。最后,基于华中地区某地轨道交通基础设施分布式光伏系统对所提方法的有效性和优越性进行验证,并通过定性和定量分析各典型场景的出力特性揭示轨道交通基础设施分布式光伏出力的规律和特点。 展开更多
关键词 分布式光伏出力 改进k-means聚类算法 典型出力场景 出力特性分析
下载PDF
基于K-means聚类和BP神经网络的电梯能耗实时监测方法
12
作者 彭诚 《通化师范学院学报》 2024年第4期50-56,共7页
针对现有方法在对电梯能耗进行监测时,存在监测精度低、用时长、监测结果不理想的问题,该文提出一种基于K-means聚类算法和BP神经网络相结合的电梯能耗实时监测方法 .在经过清洗的能耗数据中提取影响建筑能耗实时监测的主要因素特征值,... 针对现有方法在对电梯能耗进行监测时,存在监测精度低、用时长、监测结果不理想的问题,该文提出一种基于K-means聚类算法和BP神经网络相结合的电梯能耗实时监测方法 .在经过清洗的能耗数据中提取影响建筑能耗实时监测的主要因素特征值,利用相似系数法进行相似度计算,获取相似系数.对相似电梯能耗数据进行小波分解获取高低频序列,分别采用LSSVM-GSA检测方法和均方加权处理方法对低频和高频部分进行处理,将两个结果进行重构,得到最终的实时监测结果 .仿真实验结果表明:所提方法能够获取高精度、低耗时、高稳定性的监测结果 . 展开更多
关键词 电梯能耗 k-meanS聚类算法 BP神经网络 数据清洗
下载PDF
启发式k-means聚类算法的改进研究
13
作者 殷丽凤 栗庆杰 《大连交通大学学报》 CAS 2024年第2期115-119,共5页
启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结... 启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结果的误差平方和较大并且轮廓系数偏小。针对这一问题,提出了CHk-means算法,该算法引入仔细播种方法,克服了启发式k-means算法随机选择初始聚类中心带来的局部最优解问题;该算法引入局部异常因子LOF算法对离群点进行检测,降低了离群点数据对聚类结果的影响。在多个数据集上对3种算法进行对比试验,结果表明CHk-means算法可有效降低聚类结果的误差平方和,增强聚类的轮廓系数,使聚类质量得到明显改善。 展开更多
关键词 聚类算法 k-meanS 启发式算法 仔细播种 局部异常因子 离群点
下载PDF
加入跳跃连接的深度嵌入K-means聚类 被引量:1
14
作者 李顺勇 胥瑞 李师毅 《计算机系统应用》 2024年第1期11-21,共11页
现有的深度聚类算法大多采用对称的自编码器来提取高维数据的低维特征,但随着自编码器训练次数的不断增加,数据的低维特征空间在一定程度上发生了扭曲,这样得到的数据低维特征空间无法反映原始数据空间中潜在的聚类结构信息.为了解决上... 现有的深度聚类算法大多采用对称的自编码器来提取高维数据的低维特征,但随着自编码器训练次数的不断增加,数据的低维特征空间在一定程度上发生了扭曲,这样得到的数据低维特征空间无法反映原始数据空间中潜在的聚类结构信息.为了解决上述问题,本文提出了一种新的深度嵌入K-means算法(SDEKC).首先,在低维特征提取阶段,在对称的卷积自编码器中相对应的编码器与解码器之间以一定的权重加入两个跳跃连接,以减弱解码器对编码器的编码要求同时突出卷积自编码器的编码能力,这样可以更好地保留原始数据空间中蕴含的聚类结构信息;其次,在聚类阶段,通过一个标准正交变换矩阵将低维数据空间转换为一个新的揭示聚类结构信息的空间;最后,本文以端到端的方式采用贪婪算法迭代优化数据的低维表示及其聚类,在6个真实数据集上验证了本文提出新算法的有效性. 展开更多
关键词 跳跃连接 深度学习 卷积自编码器 嵌入k-means
下载PDF
基于交通拥堵信息的高速公路拥堵路段ACK-Means聚类
15
作者 陈昕 阮永娇 肇毓 《科学技术与工程》 北大核心 2024年第21期9194-9200,共7页
为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇... 为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇类密度、簇类间距以及簇类强度,同时又考虑到数据样本的偶然性,对离群点进行合理分配,ACK-Means算法可实现自适应确定聚类中心C和类别K值。基于实际交通拥堵信息构建数据集,Python编程实现高速公路拥堵路段ACK-Means聚类,巧妙解决了高速公路拥堵路段聚类数目K和聚类中心C设定问题。聚类结果表明,ACK-Means算法实现高速公路拥堵路段无监督聚类,聚类结果完全基于实际的高速公路交通拥堵信息,具有更高的实用性。 展开更多
关键词 交通拥堵聚类 ACk-means算法 自适应聚类中心 自适应K值 交通拥堵信息
下载PDF
基于K-Means聚类与熵权TOPSIS法的岩石可爆性评价研究
16
作者 叶海旺 雷丙响 +5 位作者 周汉红 余梦豪 雷涛 王其洲 李宁 Doumbouya Sekou 《爆破》 CSCD 北大核心 2024年第2期112-119,共8页
露天矿山的爆破块度分布,直接影响到后续的采装、运输和破碎工作。为了控制石墨矿山不同区域爆破块度分布,基于K-means无监督聚类学习法与熵权TOPSIS评价法建立了一种新的岩石可爆性评价模型,选取岩石密度、动力能量耗散率、动态抗压强... 露天矿山的爆破块度分布,直接影响到后续的采装、运输和破碎工作。为了控制石墨矿山不同区域爆破块度分布,基于K-means无监督聚类学习法与熵权TOPSIS评价法建立了一种新的岩石可爆性评价模型,选取岩石密度、动力能量耗散率、动态抗压强度、平均应变率、脆性指数作为评价指标,通过熵权计算,发现岩石破碎程度受脆性指数影响最大,受平均应变率影响最小。将此模型应用于实际石墨矿山,可爆性分为10个等级,统计不同分级下的岩石平均破碎粒径,发现可爆性分级等级越高平均粒径越大,有明显的分级特征,验证了模型的有效性。从爆破石墨矿石岩体类型看,岩石可爆性从易到难排序为:片岩、片麻岩、变粒岩、混合岩。结合石墨矿石微观观测结果分析可知:岩性从片岩向混合岩转变,岩石内部石墨晶质呈下降趋势,石墨矿石可爆性等级也随之越来越高。岩石密度、能量耗散率、动态抗压强度之间呈线性正相关,岩石可爆性与平均应变率、脆性指数存在负相关性。研究成果为矿山矿岩可爆性评价提供了一条新思路,对露天矿山爆破块度优化具有一定的理论和实践指导意义。 展开更多
关键词 岩体爆破 可爆性评价 岩石力学 k-meanS算法 熵权TOPSIS评价
下载PDF
一种融合乌鸦搜索算法的K-means聚类算法
17
作者 高海宾 《新乡学院学报》 2024年第3期19-25,共7页
传统的K-均值聚类算法(K-means)对初始聚类中心的选择敏感,容易陷入局部最优解,并且需要预先设定聚类数量K,这在实际操作中往往难以实现。为了解决这些问题,提出了一种融合乌鸦搜索算法的K-means聚类算法。该算法利用乌鸦搜索算法的全... 传统的K-均值聚类算法(K-means)对初始聚类中心的选择敏感,容易陷入局部最优解,并且需要预先设定聚类数量K,这在实际操作中往往难以实现。为了解决这些问题,提出了一种融合乌鸦搜索算法的K-means聚类算法。该算法利用乌鸦搜索算法的全局搜索能力,自动确定最佳的聚类数目K,从而提高聚类的质量和效率。通过在Seeds数据集进行实验计算卡林斯基-哈拉巴斯(Calinski-Harabasz)指数等评价指标,发现该算法聚类效果明显优于传统的K-means算法。 展开更多
关键词 k-meanS算法 乌鸦搜索算法 聚类 Calinski-Harabasz指数
下载PDF
基于K-means算法的建筑群震害分析模型缩减方法
18
作者 陈夏楠 张令心 +1 位作者 林旭川 王祺 《世界地震工程》 北大核心 2024年第1期72-79,共8页
基于建筑群模型和弹塑性时程分析的精细化城市震害模拟技术能够为防震减灾及应急救援决策提供必要的依据和参考。为了减小城市建筑群震害模拟的计算量和计算时间,本文提出一种基于聚类算法的建筑群模型缩减方法。该方法采用K-means聚类... 基于建筑群模型和弹塑性时程分析的精细化城市震害模拟技术能够为防震减灾及应急救援决策提供必要的依据和参考。为了减小城市建筑群震害模拟的计算量和计算时间,本文提出一种基于聚类算法的建筑群模型缩减方法。该方法采用K-means聚类算法,首先基于建筑结构属性向量对建筑群进行聚类,将相似的建筑结构聚为一组;然后从每组选取一个代表建筑组成建筑群缩减模型,通过减少需要分析的建筑结构数量来减少建筑群震害模拟的计算量。本文对传统的K-means算法进行改进,通过设定组内建筑结构的差异上限自动调整聚类分组数量;提出将具体地震动作用下结构地震损伤指数作为结构属性向量进行聚类,并通过算例对比分别采用两种缩减模型,即基于损伤指数聚类的缩减模型与基于结构力学模型参数聚类的缩减模型,计算结构损伤状态准确程度。对比结果表明:在聚类分组数量相同的情况下,基于损伤指数的分组明显优于基于模型参数的分组,采用模型缩减方法能够在保证足够计算精度前提下显著减少建筑群震害模拟计算量和计算时间。 展开更多
关键词 城市建筑群 k-meanS算法 模型缩减 结构模型参数 地震损伤指数
下载PDF
基于改进K-means聚类算法的网络异常数据挖掘与分类方法
19
作者 贺萌 《无线互联科技》 2024年第18期119-122,共4页
为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类... 为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类对数据的最大最小距离展开计算,融合隶属度函数与密度峰值优化算法,改进聚类初始中心选择及簇边界调整,从而提高异常识别准确性和分类效率。通过实验结果证明,该方法能够明显改善聚类效果与性能。 展开更多
关键词 k-meanS聚类算法 网络异常 数据挖掘 数据分类 离群点检测
下载PDF
一种基于K-means聚类算法的沙尘天气客观识别方法 被引量:2
20
作者 段赛男 焦瑞莉 吴成来 《气候与环境研究》 CSCD 北大核心 2024年第2期178-192,共15页
鉴于以往基于污染物浓度时间序列进行分析的沙尘天气识别方法在判断标准上存在一定的主观性,本文提出一种基于K-means聚类算法的沙尘天气客观识别方法。本方法利用环境监测总站的PM2.5和PM10小时浓度资料进行聚类,首先选取最优的分类数... 鉴于以往基于污染物浓度时间序列进行分析的沙尘天气识别方法在判断标准上存在一定的主观性,本文提出一种基于K-means聚类算法的沙尘天气客观识别方法。本方法利用环境监测总站的PM2.5和PM10小时浓度资料进行聚类,首先选取最优的分类数目K进行聚类,其次对聚类结果中离散程度较高的类别进行再次聚类,直到无需分类。将本方法应用于西安市2018年2~4月沙尘天气的识别中,结果表明,本方法可有效识别主要沙尘天气。此外,利用本方法可得到沙尘天气典型特征:PM2.5占PM10浓度的比例小于43.5%、PM10浓度高于228μg/m^(3,)符合沙尘天气期间PM10浓度较高且以粗颗粒物为主的物理特征。总体上看,本方法物理基础清晰,可操行性强,适用于大规模数据处理,具有较好的实用价值和应用前景。 展开更多
关键词 沙尘天气识别 k-meanS 聚类 客观识别 PM2.5 PM10
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部