期刊文献+
共找到8,305篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进K-means算法的室内可见光通信O-OFDM系统信道均衡技术
1
作者 贾科军 连江龙 +1 位作者 张常瑞 蔺莹 《电讯技术》 北大核心 2025年第1期96-102,共7页
在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随... 在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。 展开更多
关键词 可见光通信 光正交频分复用 多径信道 信道均衡 k-means算法 反向传播神经网络
下载PDF
基于K-means/RPF的大型遮蔽空间人员定位算法
2
作者 白泽坤 苏中 吴学佳 《传感器与微系统》 北大核心 2025年第1期157-160,164,共5页
针对大型遮蔽空间惯性/地图匹配算法中粒子贫化和子粒子群迷路效应导致定位精度下降的问题,提出一种基于K-means聚类的回溯粒子滤波(RPF)人员定位算法。首先,用行人航位推算(PDR)中航向更新、步频检测及步长估计得到初始运动轨迹;然后,... 针对大型遮蔽空间惯性/地图匹配算法中粒子贫化和子粒子群迷路效应导致定位精度下降的问题,提出一种基于K-means聚类的回溯粒子滤波(RPF)人员定位算法。首先,用行人航位推算(PDR)中航向更新、步频检测及步长估计得到初始运动轨迹;然后,设计RPF算法,提高存活粒子有效性和多样性,缓解粒子贫化,提高人员定位精度;最后,通过K-means聚类算法解决子粒子群的迷路效应,修正人员轨迹出现在非可行域的现象。实验结果表明:本文算法抑制了粒子贫化和子粒子群迷路效应,人员平均定位误差相比惯性定位和标准粒子滤波降低了81.20%和51.48%。 展开更多
关键词 大型遮蔽空间 k-means聚类 回溯粒子滤波 粒子贫化 迷路效应
下载PDF
基于k-means聚类的无线传感器网络低功耗路由算法
3
作者 袁晔 肖剑 +2 位作者 何志成 张赞 程鸿亮 《物联网技术》 2025年第2期85-89,共5页
为提高无线传感器网络(WSN)中传感器节点的能量利用率以延长传感器网络的生命周期,提出基于k-means聚类的WSN低功耗路由算法。先按照距离乘积最大规则选取聚类初始簇中心,并在k-means算法迭代过程中引入能耗因子来优化k-means的分簇效果... 为提高无线传感器网络(WSN)中传感器节点的能量利用率以延长传感器网络的生命周期,提出基于k-means聚类的WSN低功耗路由算法。先按照距离乘积最大规则选取聚类初始簇中心,并在k-means算法迭代过程中引入能耗因子来优化k-means的分簇效果,降低基站附近节点的能耗和簇内的数据传输能耗;再使用Dijkstra算法搜寻簇首和基站间的最低功耗传输路径,以降低簇首能耗。仿真结果表明,该算法提高了网络的能量利用率,有效延长了网络的生命周期,使首个死亡节点延后出现,对WSN实现了更好的优化。 展开更多
关键词 WSN k-means均值聚类算法 低功耗路由 最低功耗传输路径 DIJKSTRA算法 能耗均衡
下载PDF
基于K-means的海南物流职业本科学生学习行为分析
4
作者 李芸嘉 《物流科技》 2025年第3期178-181,共4页
在现代物流行业中,培养具备全面专业知识和实践能力的物流职业本科学生至关重要。为了更好地了解学生在学习过程中的行为和学习习惯,文章将采用K-means聚类模型方法,对现代物流管理(职业本科)学生的学习行为进行深入探索与分类。通过这... 在现代物流行业中,培养具备全面专业知识和实践能力的物流职业本科学生至关重要。为了更好地了解学生在学习过程中的行为和学习习惯,文章将采用K-means聚类模型方法,对现代物流管理(职业本科)学生的学习行为进行深入探索与分类。通过这项研究,旨在为优化物流教育、提高学生学习效果提供有益的参考建议。文章将介绍研究设计、数据收集与处理方法,并对结果进行解析与讨论。 展开更多
关键词 物流 职业本科 学情分析 k-means聚类
下载PDF
我国公共图书馆发展水平的K-means聚类分析
5
作者 熊朝松 《江苏科技信息》 2025年第2期71-74,115,共5页
文章首先基于第七次全国县级以上公共图书馆评估定级上等级馆名单数据,统计我国31个省市自治区公共图书馆进入一级图书馆、二级图书馆、三级图书馆以及未定等级数量,计算出比例;随后基于比例数据,利用K-means聚类分析算法对我国31个省... 文章首先基于第七次全国县级以上公共图书馆评估定级上等级馆名单数据,统计我国31个省市自治区公共图书馆进入一级图书馆、二级图书馆、三级图书馆以及未定等级数量,计算出比例;随后基于比例数据,利用K-means聚类分析算法对我国31个省市自治区进行数据分析,用来研究我国公共图书馆发展水平情况。数据分析结果显示,我国31个省市自治区公共图书馆发展水平可以分为3个档次:领先水平,包括北京等8地;中等水平,包括河北等17地;落后水平,包括辽宁等6地。最后,文章根据聚类分析结果提出了助力我国公共图书馆高质量均衡发展的相关建议与看法。 展开更多
关键词 公共图书馆 发展水平 k-means聚类分析
下载PDF
基于K-Means++算法和改进遗传算法的维保站维修调度方法的研究
6
作者 何晨曦 《科学技术创新》 2025年第3期49-52,共4页
传统的电梯维保工作模式是定期保养,即针对每台电梯而言,需要每半个月去保养一次,然而电梯设备的分布和保养进度的复杂性决定了人为排定的维保路线不能够最大限度地解决维保资源。为此提出基于K-Means++算法和改进遗传算法的维保站维修... 传统的电梯维保工作模式是定期保养,即针对每台电梯而言,需要每半个月去保养一次,然而电梯设备的分布和保养进度的复杂性决定了人为排定的维保路线不能够最大限度地解决维保资源。为此提出基于K-Means++算法和改进遗传算法的维保站维修调度方法,首先使用分解法的思想将问题进行拆分,然后采用K均值聚类算法将维保任务分配到合适的维保站,建立总路程最短的维保调度模型,最后利用改进遗传算法进行求解,获取最优路线规划结果,对缩减维保工作时间,提升维保工作效率,从而提升电梯使用的安全性和可靠性有一定的意义。 展开更多
关键词 电梯维保 维保调度 分解法 k-means++算法 改进遗传算法
下载PDF
基于改进K-means聚类算法的分布式储能集群划分方法
7
作者 刘春雨 《东北电力技术》 2025年第1期1-5,共5页
随着规模化分布式电源及储能的接入,配电网的功率返送、节点过电压等问题愈加显著,对电网规划、运行监视和调度控制等造成一定影响,也不利于储能大范围发展。为此提出一种适用于规模化分布式储能的集群划分方法,基于功率节点电压灵敏度... 随着规模化分布式电源及储能的接入,配电网的功率返送、节点过电压等问题愈加显著,对电网规划、运行监视和调度控制等造成一定影响,也不利于储能大范围发展。为此提出一种适用于规模化分布式储能的集群划分方法,基于功率节点电压灵敏度的电气距离模块度指标,对经典K-means算法进行改进,设计节点指数法、肘部法则优化初始聚类中心选择和集群数确定。以IEEE33系统算例进行验证,结果表明所提集群划分方法具有较强的电气耦合性、准确性和运算效率。 展开更多
关键词 分布式储能 集群划分 配电网结构 k-means聚类算法 划分指标
下载PDF
基于特征分箱和K-Means算法的用户行为分析方法 被引量:1
8
作者 殷丽凤 路建政 《云南民族大学学报(自然科学版)》 CAS 2024年第2期251-257,共7页
针对网购用户所产生的购物行为进行分析,首先通过数据处理构建客户关系管理模型(RFM模型),在此模型的基础上采用特征分箱法和K-Means聚类两种方法对用户进行细分,并对2种模型结果进行比较分析,讨论二者的差异性和具体的应用范围和意义.... 针对网购用户所产生的购物行为进行分析,首先通过数据处理构建客户关系管理模型(RFM模型),在此模型的基础上采用特征分箱法和K-Means聚类两种方法对用户进行细分,并对2种模型结果进行比较分析,讨论二者的差异性和具体的应用范围和意义.其中,基于特征分箱法的RFM模型将变量转化到相似的尺度上并将变量离散化,使得用户分类标签更加清晰,也可依据各类标签分类出不同类型的用户.K-Means算法通过轮廓系数评估聚类算法质量以至于选取最优K值.本文实验分析结果可为运营商提供更加可靠直观的数据,使得运营商可以根据不同用户的不同行为进行市场细分,进而进行精准营销和服务设置. 展开更多
关键词 特征分箱 k-means算法 用户行为 RFM模型 网购
下载PDF
基于改进K-means与机器视觉的档案数据分析技术 被引量:1
9
作者 崔雨晴 《电子设计工程》 2024年第2期191-195,共5页
为了提升医疗信息系统对健康档案数据的分析效率,文中采用图像采集、降噪、配准与差分等技术提取医疗图像信息,进而有效提升信息系统的数据采集效率。同时还对传统的K-means算法加以改进,并提出了一种基于类间、类内距离的聚类初始化评... 为了提升医疗信息系统对健康档案数据的分析效率,文中采用图像采集、降噪、配准与差分等技术提取医疗图像信息,进而有效提升信息系统的数据采集效率。同时还对传统的K-means算法加以改进,并提出了一种基于类间、类内距离的聚类初始化评价指标体系(BWP),将其应用于采集到的档案数据中,以实现快速的聚类分析。将所提算法在CUDA计算平台上进行了实现,测试结果表明,该方法的聚类精度和运行效率较现有算法均有显著提升。此外,改进后K-means算法的正确聚类样本数量占比提升了4.88%,高于现有的主流指标体系,且当聚类数k的取值为16或32时,运行时间大幅降低。 展开更多
关键词 档案数据 k-means CUDA 机器视觉 图像处理
下载PDF
光伏波动平抑下改进K-means的电池储能动态分组控制策略 被引量:2
10
作者 余洋 陆文韬 +3 位作者 陈东阳 刘霡 夏雨星 郑晓明 《电力系统保护与控制》 EI CSCD 北大核心 2024年第7期1-11,共11页
针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并... 针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。 展开更多
关键词 电池储能系统 波动平抑 功率分配 改进侏儒猫鼬优化算法 改进k-means聚类算法
下载PDF
加入跳跃连接的深度嵌入K-means聚类 被引量:2
11
作者 李顺勇 胥瑞 李师毅 《计算机系统应用》 2024年第1期11-21,共11页
现有的深度聚类算法大多采用对称的自编码器来提取高维数据的低维特征,但随着自编码器训练次数的不断增加,数据的低维特征空间在一定程度上发生了扭曲,这样得到的数据低维特征空间无法反映原始数据空间中潜在的聚类结构信息.为了解决上... 现有的深度聚类算法大多采用对称的自编码器来提取高维数据的低维特征,但随着自编码器训练次数的不断增加,数据的低维特征空间在一定程度上发生了扭曲,这样得到的数据低维特征空间无法反映原始数据空间中潜在的聚类结构信息.为了解决上述问题,本文提出了一种新的深度嵌入K-means算法(SDEKC).首先,在低维特征提取阶段,在对称的卷积自编码器中相对应的编码器与解码器之间以一定的权重加入两个跳跃连接,以减弱解码器对编码器的编码要求同时突出卷积自编码器的编码能力,这样可以更好地保留原始数据空间中蕴含的聚类结构信息;其次,在聚类阶段,通过一个标准正交变换矩阵将低维数据空间转换为一个新的揭示聚类结构信息的空间;最后,本文以端到端的方式采用贪婪算法迭代优化数据的低维表示及其聚类,在6个真实数据集上验证了本文提出新算法的有效性. 展开更多
关键词 跳跃连接 深度学习 卷积自编码器 嵌入k-means
下载PDF
基于K-means聚类和BP神经网络的电梯能耗实时监测方法 被引量:2
12
作者 彭诚 《通化师范学院学报》 2024年第4期50-56,共7页
针对现有方法在对电梯能耗进行监测时,存在监测精度低、用时长、监测结果不理想的问题,该文提出一种基于K-means聚类算法和BP神经网络相结合的电梯能耗实时监测方法 .在经过清洗的能耗数据中提取影响建筑能耗实时监测的主要因素特征值,... 针对现有方法在对电梯能耗进行监测时,存在监测精度低、用时长、监测结果不理想的问题,该文提出一种基于K-means聚类算法和BP神经网络相结合的电梯能耗实时监测方法 .在经过清洗的能耗数据中提取影响建筑能耗实时监测的主要因素特征值,利用相似系数法进行相似度计算,获取相似系数.对相似电梯能耗数据进行小波分解获取高低频序列,分别采用LSSVM-GSA检测方法和均方加权处理方法对低频和高频部分进行处理,将两个结果进行重构,得到最终的实时监测结果 .仿真实验结果表明:所提方法能够获取高精度、低耗时、高稳定性的监测结果 . 展开更多
关键词 电梯能耗 k-means聚类算法 BP神经网络 数据清洗
下载PDF
基于K-means聚类和特征空间增强的噪声标签深度学习算法 被引量:2
13
作者 吕佳 邱小龙 《智能系统学报》 CSCD 北大核心 2024年第2期267-277,共11页
深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样... 深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样本集赋予伪标签。然而,错误的伪标签以及训练样本数量不足的问题仍然限制着噪声标签学习算法性能的提升。为解决上述问题,提出基于K-means聚类和特征空间增强的噪声标签深度学习算法。首先,该算法利用K-means聚类算法对干净样本集进行标签聚类,并根据噪声样本集与聚类中心的距离大小筛选出难以分类的噪声样本,以提高训练样本的质量;其次,使用mixup算法扩充干净样本集和噪声样本集,以增加训练样本的数量;最后,采用特征空间增强算法抑制mixup算法新生成的噪声样本,从而提高网络的分类准确率。并在CIFAR10、CIFAR100、MNIST和ANIMAL-10共4个数据集上试验验证了该算法的有效性。 展开更多
关键词 噪声标签学习 深度学习 半监督学习 机器学习 神经网络 k-means聚类 特征空间增强 mixup算法
下载PDF
基于改进K-means聚类的轨道交通基础设施分布式光伏发电典型场景生成及出力特性分析 被引量:1
14
作者 陈凯 雷琪 李豆萌 《电气工程学报》 CSCD 北大核心 2024年第2期364-372,共9页
受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于... 受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于分布式光伏发电设施以及气象数据,利用PVsyst软件模拟光伏发电出力数据。然后,针对基本K-means聚类算法聚类参数和初始聚类中心盲目性高的问题,结合聚类有效性指标(Density based index,DBI)和层次聚类对其进行改进并利用改进K-means聚类算法生成光伏典型日出力场景。最后,基于华中地区某地轨道交通基础设施分布式光伏系统对所提方法的有效性和优越性进行验证,并通过定性和定量分析各典型场景的出力特性揭示轨道交通基础设施分布式光伏出力的规律和特点。 展开更多
关键词 分布式光伏出力 改进k-means聚类算法 典型出力场景 出力特性分析
下载PDF
基于K-Means聚类与熵权TOPSIS法的岩石可爆性评价研究
15
作者 叶海旺 雷丙响 +5 位作者 周汉红 余梦豪 雷涛 王其洲 李宁 Doumbouya Sekou 《爆破》 CSCD 北大核心 2024年第2期112-119,共8页
露天矿山的爆破块度分布,直接影响到后续的采装、运输和破碎工作。为了控制石墨矿山不同区域爆破块度分布,基于K-means无监督聚类学习法与熵权TOPSIS评价法建立了一种新的岩石可爆性评价模型,选取岩石密度、动力能量耗散率、动态抗压强... 露天矿山的爆破块度分布,直接影响到后续的采装、运输和破碎工作。为了控制石墨矿山不同区域爆破块度分布,基于K-means无监督聚类学习法与熵权TOPSIS评价法建立了一种新的岩石可爆性评价模型,选取岩石密度、动力能量耗散率、动态抗压强度、平均应变率、脆性指数作为评价指标,通过熵权计算,发现岩石破碎程度受脆性指数影响最大,受平均应变率影响最小。将此模型应用于实际石墨矿山,可爆性分为10个等级,统计不同分级下的岩石平均破碎粒径,发现可爆性分级等级越高平均粒径越大,有明显的分级特征,验证了模型的有效性。从爆破石墨矿石岩体类型看,岩石可爆性从易到难排序为:片岩、片麻岩、变粒岩、混合岩。结合石墨矿石微观观测结果分析可知:岩性从片岩向混合岩转变,岩石内部石墨晶质呈下降趋势,石墨矿石可爆性等级也随之越来越高。岩石密度、能量耗散率、动态抗压强度之间呈线性正相关,岩石可爆性与平均应变率、脆性指数存在负相关性。研究成果为矿山矿岩可爆性评价提供了一条新思路,对露天矿山爆破块度优化具有一定的理论和实践指导意义。 展开更多
关键词 岩体爆破 可爆性评价 岩石力学 k-means算法 熵权TOPSIS评价
下载PDF
基于K-means与宽度学习的肺炎图像分类算法
16
作者 程立英 谷利茹 +3 位作者 晏旻 管文印 王晓伟 张志美 《沈阳师范大学学报(自然科学版)》 CAS 2024年第4期334-339,共6页
随着人们日常生活中肺部疾病风险的增加,肺部病变筛查变得至关重要。通过CT图像快速辅助诊断肺炎可以有效遏制病情。针对现有的肺部CT图像辅助诊断方法存在数据标记量大、训练数据耗时长以及对医疗设备计算量和内存要求高等问题,提出基... 随着人们日常生活中肺部疾病风险的增加,肺部病变筛查变得至关重要。通过CT图像快速辅助诊断肺炎可以有效遏制病情。针对现有的肺部CT图像辅助诊断方法存在数据标记量大、训练数据耗时长以及对医疗设备计算量和内存要求高等问题,提出基于K-means与宽度学习的肺炎图像分类算法。该算法引入K-means使宽度学习系统更好地提取肺部CT图像特征,缓解随机获得节点权值的性能局限,建立与典型特征学习相关的宽度学习模型,并将算法针对公开数据集进行相关实验。实验结果表明,该模型较深度学习模型的计算量大大减小,在训练速度方面有明显优势,同时也保证了较好的分类结果,极大地降低了诊断时间;在数据有限的情况下,改进后的方法与现有主流方法相比获得了更加精确的肺炎诊断结果,提出的算法更适于嵌入医学设备等资源有限的硬件系统中。 展开更多
关键词 肺炎诊断 CT图像 k-means 宽度学习
下载PDF
基于改进K-means算法的物流配送中心选址研究 被引量:2
17
作者 姚佼 吴秀荣 +3 位作者 李皓 谢贝贝 王诗璇 梁益铭 《物流科技》 2024年第5期10-13,19,共5页
针对传统K-means算法需要主观设定K值及无法处理类别型数据问题,文章运用肘部法及轮廓系数法确定合理K值,对类别型数据采取独热编码(One-Hot Encoding)转换为可以处理的连续型数据,并将其运用到在物流配送中心选址中;并综合考虑多种类... 针对传统K-means算法需要主观设定K值及无法处理类别型数据问题,文章运用肘部法及轮廓系数法确定合理K值,对类别型数据采取独热编码(One-Hot Encoding)转换为可以处理的连续型数据,并将其运用到在物流配送中心选址中;并综合考虑多种类别的影响因素,构建了相应的影响因素指标体系,提出的模型能够识别输入数据的数值型及类别型数据,实现样本的有效聚类。相关的案例分析结果表明,相比传统K-means聚类,文章的改进K-means算法选址结果可使物流总成本降低8.76%,运营成本降低14.85%,固定成本降低8.09%,效果显著。 展开更多
关键词 物流配送中心选址 k-means聚类算法 肘部法 轮廓系数法 独热编码
下载PDF
基于改进K-means数据聚类算法的网络入侵检测 被引量:3
18
作者 黄俊萍 《成都工业学院学报》 2024年第2期58-62,97,共6页
随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算... 随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算法求取最优初始聚类中心,实现K-means数据聚类算法的改进;最后以计算得出的特征值为输入项,实现对网络入侵行为的精准检测。结果表明:K-means算法改进后较改进前的戴维森堡丁指数更小,均低于0.6,达到了改进目的。改进K-means算法各样本的准确率均高于90%,相对更高,检测时间均低于10 s,相对更少,说明该方法能够以高效率完成更准确的网络入侵检测。 展开更多
关键词 改进k-means数据聚类算法 防火墙日志 入侵检测特征 粒子群算法 网络入侵检测
下载PDF
基于K-means算法的建筑群震害分析模型缩减方法
19
作者 陈夏楠 张令心 +1 位作者 林旭川 王祺 《世界地震工程》 北大核心 2024年第1期72-79,共8页
基于建筑群模型和弹塑性时程分析的精细化城市震害模拟技术能够为防震减灾及应急救援决策提供必要的依据和参考。为了减小城市建筑群震害模拟的计算量和计算时间,本文提出一种基于聚类算法的建筑群模型缩减方法。该方法采用K-means聚类... 基于建筑群模型和弹塑性时程分析的精细化城市震害模拟技术能够为防震减灾及应急救援决策提供必要的依据和参考。为了减小城市建筑群震害模拟的计算量和计算时间,本文提出一种基于聚类算法的建筑群模型缩减方法。该方法采用K-means聚类算法,首先基于建筑结构属性向量对建筑群进行聚类,将相似的建筑结构聚为一组;然后从每组选取一个代表建筑组成建筑群缩减模型,通过减少需要分析的建筑结构数量来减少建筑群震害模拟的计算量。本文对传统的K-means算法进行改进,通过设定组内建筑结构的差异上限自动调整聚类分组数量;提出将具体地震动作用下结构地震损伤指数作为结构属性向量进行聚类,并通过算例对比分别采用两种缩减模型,即基于损伤指数聚类的缩减模型与基于结构力学模型参数聚类的缩减模型,计算结构损伤状态准确程度。对比结果表明:在聚类分组数量相同的情况下,基于损伤指数的分组明显优于基于模型参数的分组,采用模型缩减方法能够在保证足够计算精度前提下显著减少建筑群震害模拟计算量和计算时间。 展开更多
关键词 城市建筑群 k-means算法 模型缩减 结构模型参数 地震损伤指数
下载PDF
基于主题词向量中心点的K-means文本聚类算法
20
作者 季铎 刘云钊 +1 位作者 彭如香 孔华锋 《计算机应用与软件》 北大核心 2024年第10期282-286,318,共6页
K-means由于其时间复杂度低运行速度快一直是最为流行的聚类算法之一,但是该算法在进行聚类时需要预先给出聚类个数和初始类中心点,其选取得合适与否会直接影响最终聚类效果。该文对初始类中心和迭代类中心的选取进行大量研究,根据决策... K-means由于其时间复杂度低运行速度快一直是最为流行的聚类算法之一,但是该算法在进行聚类时需要预先给出聚类个数和初始类中心点,其选取得合适与否会直接影响最终聚类效果。该文对初始类中心和迭代类中心的选取进行大量研究,根据决策图进行初始类中心的选择,利用每个类簇的主题词向量替代均值作为迭代类中心。实验表明,该文的初始点选取方法能够准确地选取初始点,且利用主题词向量作为迭代类中心能够很好地避免噪声点和噪声特征的影响,很大程度上地提高了K-means算法的性能。 展开更多
关键词 k-means 初始点 决策图 迭代类中心 主题词向量
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部