期刊文献+
共找到7,841篇文章
< 1 2 250 >
每页显示 20 50 100
Active learning accelerated Monte-Carlo simulation based on the modified K-nearest neighbors algorithm and its application to reliability estimations
1
作者 Zhifeng Xu Jiyin Cao +2 位作者 Gang Zhang Xuyong Chen Yushun Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期306-313,共8页
This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a rand... This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs,the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification,which is applicable for most structural reliability estimation problems.Moreover,the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements,which further validates its practicability. 展开更多
关键词 Active learning Monte-carlo simulation k-nearest neighbors Reliability estimation CLASSIFICATION
下载PDF
RecBERT:Semantic recommendation engine with large language model enhanced query segmentation for k-nearest neighbors ranking retrieval
2
作者 Richard Wu 《Intelligent and Converged Networks》 EI 2024年第1期42-52,共11页
The increasing amount of user traffic on Internet discussion forums has led to a huge amount of unstructured natural language data in the form of user comments.Most modern recommendation systems rely on manual tagging... The increasing amount of user traffic on Internet discussion forums has led to a huge amount of unstructured natural language data in the form of user comments.Most modern recommendation systems rely on manual tagging,relying on administrators to label the features of a class,or story,which a user comment corresponds to.Another common approach is to use pre-trained word embeddings to compare class descriptions for textual similarity,then use a distance metric such as cosine similarity or Euclidean distance to find top k neighbors.However,neither approach is able to fully utilize this user-generated unstructured natural language data,reducing the scope of these recommendation systems.This paper studies the application of domain adaptation on a transformer for the set of user comments to be indexed,and the use of simple contrastive learning for the sentence transformer fine-tuning process to generate meaningful semantic embeddings for the various user comments that apply to each class.In order to match a query containing content from multiple user comments belonging to the same class,the construction of a subquery channel for computing class-level similarity is proposed.This channel uses query segmentation of the aggregate query into subqueries,performing k-nearest neighbors(KNN)search on each individual subquery.RecBERT achieves state-of-the-art performance,outperforming other state-of-the-art models in accuracy,precision,recall,and F1 score for classifying comments between four and eight classes,respectively.RecBERT outperforms the most precise state-of-the-art model(distilRoBERTa)in precision by 6.97%for matching comments between eight classes. 展开更多
关键词 sentence transformer simple contrastive learning large language models query segmentation k-nearest neighbors
原文传递
A Shared Natural Neighbors Based-Hierarchical Clustering Algorithm for Discovering Arbitrary-Shaped Clusters
3
作者 Zhongshang Chen Ji Feng +1 位作者 Fapeng Cai Degang Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期2031-2048,共18页
In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared... In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes. 展开更多
关键词 Cluster analysis shared natural neighbor hierarchical clustering
下载PDF
k-Nearest Neighbors for automated classification of celestial objects 被引量:4
4
作者 LI LiLi1,2,3, ZHANG YanXia1 & ZHAO YongHeng1 1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 2 Department of Physics, Hebei Normal University, Shijiazhuang 050016, China 3 Weishanlu Middle School, Tianjin 300222, China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2008年第7期916-922,共7页
The nearest neighbors (NNs) classifiers, especially the k-Nearest Neighbors (kNNs) algorithm, are among the simplest and yet most efficient classification rules and widely used in practice. It is a nonparametric metho... The nearest neighbors (NNs) classifiers, especially the k-Nearest Neighbors (kNNs) algorithm, are among the simplest and yet most efficient classification rules and widely used in practice. It is a nonparametric method of pattern recognition. In this paper, k-Nearest Neighbors, one of the most commonly used machine learning methods, work in automatic classification of multi-wavelength astronomical objects. Through the experiment, we conclude that the running speed of the kNN classier is rather fast and the classification accuracy is up to 97.73%. As a result, it is efficient and applicable to discriminate active objects from stars and normal galaxies with this method. The classifiers trained by the kNN method can be used to solve the automated classification problem faced by astronomy and the virtual observatory (VO). 展开更多
关键词 k-nearest neighbors DATA analysis CLASSIFICATION astronomical CATALOGUES
原文传递
GHM-FKNN:a generalized Heronian mean based fuzzy k-nearest neighbor classifier for the stock trend prediction
5
作者 吴振峰 WANG Mengmeng +1 位作者 LAN Tian ZHANG Anyuan 《High Technology Letters》 EI CAS 2023年第2期122-129,共8页
Stock trend prediction is a challenging problem because it involves many variables.Aiming at the problem that some existing machine learning techniques, such as random forest(RF), probabilistic random forest(PRF), k-n... Stock trend prediction is a challenging problem because it involves many variables.Aiming at the problem that some existing machine learning techniques, such as random forest(RF), probabilistic random forest(PRF), k-nearest neighbor(KNN), and fuzzy KNN(FKNN), have difficulty in accurately predicting the stock trend(uptrend or downtrend) for a given date, a generalized Heronian mean(GHM) based FKNN predictor named GHM-FKNN was proposed.GHM-FKNN combines GHM aggregation function with the ideas of the classical FKNN approach.After evaluation, the comparison results elucidated that GHM-FKNN outperformed the other best existing methods RF, PRF, KNN and FKNN on independent test datasets corresponding to three stocks, namely AAPL, AMZN and NFLX.Compared with RF, PRF, KNN and FKNN, GHM-FKNN achieved the best performance with accuracy of 62.37% for AAPL, 58.25% for AMZN, and 64.10% for NFLX. 展开更多
关键词 stock trend prediction Heronian mean fuzzy k-nearest neighbor(FKNN)
下载PDF
Diagnosis of Disc Space Variation Fault Degree of Transformer Winding Based on K-Nearest Neighbor Algorithm
6
作者 Song Wang Fei Xie +3 位作者 Fengye Yang Shengxuan Qiu Chuang Liu Tong Li 《Energy Engineering》 EI 2023年第10期2273-2285,共13页
Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose t... Winding is one of themost important components in power transformers.Ensuring the health state of the winding is of great importance to the stable operation of the power system.To efficiently and accurately diagnose the disc space variation(DSV)fault degree of transformer winding,this paper presents a diagnostic method of winding fault based on the K-Nearest Neighbor(KNN)algorithmand the frequency response analysis(FRA)method.First,a laboratory winding model is used,and DSV faults with four different degrees are achieved by changing disc space of the discs in the winding.Then,a series of FRA tests are conducted to obtain the FRA results and set up the FRA dataset.Second,ten different numerical indices are utilized to obtain features of FRA curves of faulted winding.Third,the 10-fold cross-validation method is employed to determine the optimal k-value of KNN.In addition,to improve the accuracy of the KNN model,a comparative analysis is made between the accuracy of the KNN algorithm and k-value under four distance functions.After getting the most appropriate distance metric and kvalue,the fault classificationmodel based on theKNN and FRA is constructed and it is used to classify the degrees of DSV faults.The identification accuracy rate of the proposed model is up to 98.30%.Finally,the performance of the model is presented by comparing with the support vector machine(SVM),SVM optimized by the particle swarmoptimization(PSO-SVM)method,and randomforest(RF).The results show that the diagnosis accuracy of the proposed model is the highest and the model can be used to accurately diagnose the DSV fault degrees of the winding. 展开更多
关键词 Transformer winding frequency response analysis(FRA)method k-nearest neighbor(KNN) disc space variation(DSV)
下载PDF
Accelerated k-nearest neighbors algorithm based on principal component analysis for text categorization 被引量:3
7
作者 Min DU Xing-shu CHEN 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2013年第6期407-416,共10页
Text categorization is a significant technique to manage the surging text data on the Internet.The k-nearest neighbors(kNN) algorithm is an effective,but not efficient,classification model for text categorization.In t... Text categorization is a significant technique to manage the surging text data on the Internet.The k-nearest neighbors(kNN) algorithm is an effective,but not efficient,classification model for text categorization.In this paper,we propose an effective strategy to accelerate the standard kNN,based on a simple principle:usually,near points in space are also near when they are projected into a direction,which means that distant points in the projection direction are also distant in the original space.Using the proposed strategy,most of the irrelevant points can be removed when searching for the k-nearest neighbors of a query point,which greatly decreases the computation cost.Experimental results show that the proposed strategy greatly improves the time performance of the standard kNN,with little degradation in accuracy.Specifically,it is superior in applications that have large and high-dimensional datasets. 展开更多
关键词 k-nearest neighbors(kNN) TEXT CATEGORIZATION Accelerating strategy Principal COMPONENT analysis(PCA)
原文传递
Time-Series Forecasting Using Autoregression Enhanced k-Nearest Neighbors Method 被引量:1
8
作者 潘峰 赵海波 刘华山 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第4期434-442,共9页
This study proposes two metrics using the nearest neighbors method to improve the accuracy of time-series forecasting. These two metrics can be treated as a hybrid forecasting approach to combine linear and non-linear... This study proposes two metrics using the nearest neighbors method to improve the accuracy of time-series forecasting. These two metrics can be treated as a hybrid forecasting approach to combine linear and non-linear forecasting techniques. One metric redefines the distance in k-nearest neighbors based on the coefficients of autoregression (AR) in time series. Meanwhile, an improvement to Kulesh's adaptive metrics in the nearest neighbors is also presented. To evaluate the performance of the two proposed metrics, three types of time-series data, namely deterministic synthetic data, chaotic time-series data and real time-series data, are predicted. Experimental results show the superiority of the proposed AR-enhanced k-nearest neighbors methods to the traditional k-nearest neighbors metric and Kulesh's adaptive metrics. 展开更多
关键词 time series forecasting nearest neighbors method autoregression (AR) metrics
原文传递
A Multi-Token Sector Antenna Neighbor Discovery Protocol for Directional Ad Hoc Networks
9
作者 Zhang Hang Li Bo +2 位作者 Yan Zhongjiang Yang Mao Li Xinru 《China Communications》 SCIE CSCD 2024年第7期149-168,共20页
In this paper,we propose a Multi-token Sector Antenna Neighbor Discovery(M-SAND)protocol to enhance the efficiency of neighbor discovery in asynchronous directional ad hoc networks.The central concept of our work invo... In this paper,we propose a Multi-token Sector Antenna Neighbor Discovery(M-SAND)protocol to enhance the efficiency of neighbor discovery in asynchronous directional ad hoc networks.The central concept of our work involves maintaining multiple tokens across the network.To prevent mutual interference among multi-token holders,we introduce the time and space non-interference theorems.Furthermore,we propose a master-slave strategy between tokens.When the master token holder(MTH)performs the neighbor discovery,it decides which 1-hop neighbor is the next MTH and which 2-hop neighbors can be the new slave token holders(STHs).Using this approach,the MTH and multiple STHs can simultaneously discover their neighbors without causing interference with each other.Building on this foundation,we provide a comprehensive procedure for the M-SAND protocol.We also conduct theoretical analyses on the maximum number of STHs and the lower bound of multi-token generation probability.Finally,simulation results demonstrate the time efficiency of the M-SAND protocol.When compared to the QSAND protocol,which uses only one token,the total neighbor discovery time is reduced by 28% when 6beams and 112 nodes are employed. 展开更多
关键词 multi-token neighbor discovery SAND protocol sector antenna ad hoc network
下载PDF
The GSI and Building a Neighborhood Community with a Shared Future
10
作者 Luo Shengrong 《Contemporary World》 2024年第4期39-43,共5页
Against the backdrop of the international political and economic configuration featuring that“the East is rising and the West is declining”,relations between China and its neighboring countries enjoy steady developm... Against the backdrop of the international political and economic configuration featuring that“the East is rising and the West is declining”,relations between China and its neighboring countries enjoy steady development in general.However,the return of the Cold War mentality,rampant protectionism and prominent security governance issues have seriously threatened peace and stability in China’s neighboring region. 展开更多
关键词 PEACE neighboring neighborHOOD
下载PDF
Sensing and Communication Integrated Fast Neighbor Discovery for UAV Networks
11
作者 WEI Zhiqing ZHANG Yongji +1 位作者 JI Danna LI Chenfei 《ZTE Communications》 2024年第3期69-82,共14页
In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communicati... In unmanned aerial vehicle(UAV)networks,the high mobility of nodes leads to frequent changes in network topology,which brings challenges to the neighbor discovery(ND)for UAV networks.Integrated sensing and communication(ISAC),as an emerging technology in 6G mobile networks,has shown great potential in improving communication performance with the assistance of sensing information.ISAC obtains the prior information about node distribution,reducing the ND time.However,the prior information obtained through ISAC may be imperfect.Hence,an ND algorithm based on reinforcement learning is proposed.The learning automaton(LA)is applied to interact with the environment and continuously adjust the probability of selecting beams to accelerate the convergence speed of ND algorithms.Besides,an efficient ND algorithm in the neighbor maintenance phase is designed,which applies the Kalman filter to predict node movement.Simulation results show that the LA-based ND algorithm reduces the ND time by up to 32%compared with the Scan-Based Algorithm(SBA),which proves the efficiency of the proposed ND algorithms. 展开更多
关键词 unmanned aerial vehicle networks neighbor discovery integrated sensing and communication reinforcement learning Kalman filter
下载PDF
Probability Distribution of Arithmetic Average of China Aviation Network Edge Vertices Nearest Neighbor Average Degree Value and Its Evolutionary Trace Based on Complex Network
12
作者 Cheng Xiangjun Yang Fang Xiong Zhihua 《Journal of Traffic and Transportation Engineering》 2024年第4期163-174,共12页
In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of arithmetic average of edge vertices nearest neighbor average... In order to reveal the complex network characteristics and evolution principle of China aviation network,the probability distribution and evolution trace of arithmetic average of edge vertices nearest neighbor average degree values of China aviation network were studied based on the statistics data of China civil aviation network in 1988,1994,2001,2008 and 2015.According to the theory and method of complex network,the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network.Based on the statistical data,the arithmetic averages of edge vertices nearest neighbor average degree values of China aviation network in 1988,1994,2001,2008 and 2015 were calculated.Using the probability statistical analysis method,it was found that the arithmetic average of edge vertices nearest neighbor average degree values had the probability distribution of normal function and the position parameters and scale parameters of the probability distribution had linear evolution trace. 展开更多
关键词 Complex network China aviation network arithmetic average of edge vertices nearest neighbor average degree value linear evolution trace
下载PDF
基于K-Nearest Neighbor和神经网络的糖尿病分类研究 被引量:6
13
作者 陈真诚 杜莹 +3 位作者 邹春林 梁永波 吴植强 朱健铭 《中国医学物理学杂志》 CSCD 2018年第10期1220-1224,共5页
为实现糖尿病的早期筛查,提高对糖尿病分类的准确度,在研究有关糖尿病危险因素的基础上,增加糖化血红蛋白作为糖尿病早期筛查的特征之一。研究中选取与人类最为相似的食蟹猴作为研究对象,利用年龄、血压、腹围、BMI、糖化血红蛋白以及... 为实现糖尿病的早期筛查,提高对糖尿病分类的准确度,在研究有关糖尿病危险因素的基础上,增加糖化血红蛋白作为糖尿病早期筛查的特征之一。研究中选取与人类最为相似的食蟹猴作为研究对象,利用年龄、血压、腹围、BMI、糖化血红蛋白以及空腹血糖作为特征输入,将正常、糖尿病前期和糖尿病作为类别输出,利用K-Nearest Neighbor(KNN)和神经网络两种方法对其分类。发现在增加糖化血红蛋白作为分类特征之一时,KNN(K=3)和神经网络的分类准确率分别为81.8%和92.6%,明显高于没有这一特征时的准确率(68.1%和89.7%),KNN和神经网络都可以对食蟹猴数据进行分类和识别,起到早期筛查作用。 展开更多
关键词 糖尿病 糖化血红蛋白 空腹血糖 KNN 神经网络 食蟹猴
下载PDF
基于不规则区域划分方法的k-Nearest Neighbor查询算法 被引量:1
14
作者 张清清 李长云 +3 位作者 李旭 周玲芳 胡淑新 邹豪杰 《计算机系统应用》 2015年第9期186-190,共5页
随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细... 随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细介绍了一种基于不规则区域划分方法的改进型k NN查询算法,并利用对大规模数据集进行分布式并行计算的模型Map Reduce对该算法加以实现.实验结果与分析表明,Map Reduce框架下基于不规则区域划分方法的k NN查询算法可以获得较高的数据处理效率,并可以较好的支持大数据环境下数据的高效查询. 展开更多
关键词 k-nearest neighbor(k NN)查询算法 不规则区域划分方法 MAP REDUCE 大数据
下载PDF
Real-Time Spreading Thickness Monitoring of High-core Rockfill Dam Based on K-nearest Neighbor Algorithm 被引量:4
15
作者 Denghua Zhong Rongxiang Du +2 位作者 Bo Cui Binping Wu Tao Guan 《Transactions of Tianjin University》 EI CAS 2018年第3期282-289,共8页
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and... During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface. 展开更多
关键词 Core rockfill dam Dam storehouse surface construction Spreading thickness k-nearest neighbor algorithm Real-time monitor
下载PDF
Mapping aboveground biomass by integrating geospatial and forest inventory data through a k-nearest neighbor strategy in North Central Mexico 被引量:3
16
作者 Carlos A AGUIRRE-SALADO Eduardo J TREVIO-GARZA +7 位作者 Oscar A AGUIRRE-CALDERóN Javier JIMNEZ-PREZ Marco A GONZLEZ-TAGLE José R VALDZ-LAZALDE Guillermo SNCHEZ-DíAZ Reija HAAPANEN Alejandro I AGUIRRE-SALADO Liliana MIRANDA-ARAGóN 《Journal of Arid Land》 SCIE CSCD 2014年第1期80-96,共17页
As climate change negotiations progress,monitoring biomass and carbon stocks is becoming an important part of the current forest research.Therefore,national governments are interested in developing forest-monitoring s... As climate change negotiations progress,monitoring biomass and carbon stocks is becoming an important part of the current forest research.Therefore,national governments are interested in developing forest-monitoring strategies using geospatial technology.Among statistical methods for mapping biomass,there is a nonparametric approach called k-nearest neighbor(kNN).We compared four variations of distance metrics of the kNN for the spatially-explicit estimation of aboveground biomass in a portion of the Mexican north border of the intertropical zone.Satellite derived,climatic,and topographic predictor variables were combined with the Mexican National Forest Inventory(NFI)data to accomplish the purpose.Performance of distance metrics applied into the kNN algorithm was evaluated using a cross validation leave-one-out technique.The results indicate that the Most Similar Neighbor(MSN)approach maximizes the correlation between predictor and response variables(r=0.9).Our results are in agreement with those reported in the literature.These findings confirm the predictive potential of the MSN approach for mapping forest variables at pixel level under the policy of Reducing Emission from Deforestation and Forest Degradation(REDD+). 展开更多
关键词 k-nearest neighbor Mahalanobis most similar neighbor MODIS BRDF-adjusted reflectance forest inventory the policy of Reducing Emission from Deforestation and Forest Degradation
下载PDF
Computational Intelligence Prediction Model Integrating Empirical Mode Decomposition,Principal Component Analysis,and Weighted k-Nearest Neighbor 被引量:2
17
作者 Li Tang He-Ping Pan Yi-Yong Yao 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期341-349,共9页
On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feat... On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate. 展开更多
关键词 Empirical mode decomposition(EMD) k-nearest neighbor(KNN) principal component analysis(PCA) time series
下载PDF
A Short-Term Traffic Flow Forecasting Method Based on a Three-Layer K-Nearest Neighbor Non-Parametric Regression Algorithm 被引量:7
18
作者 Xiyu Pang Cheng Wang Guolin Huang 《Journal of Transportation Technologies》 2016年第4期200-206,共7页
Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting... Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting. 展开更多
关键词 Three-Layer Traffic Flow Forecasting k-nearest neighbor Non-Parametric Regression
下载PDF
Cultural Adaptation in Tim Winton's "Neighbors" 被引量:2
19
作者 曹丽华 《海外英语》 2012年第6X期174-175,共2页
As the most productive and prestigious writer in contemporary Australian literature,Tim Winton is noted not only for his novels but also for his short stories.Neighbors is a case in point.The short story describes the... As the most productive and prestigious writer in contemporary Australian literature,Tim Winton is noted not only for his novels but also for his short stories.Neighbors is a case in point.The short story describes the daily trivial incidents in the multi-cultural background according to the line of a newly-weds moving to a new neighborhood.The young couple gradually understood and communicated with their neighbors and eventually achieved cultural adaptation. 展开更多
关键词 TIM Winton neighbors CULTURAL ADAPTATION
下载PDF
Pruned fuzzy K-nearest neighbor classifier for beat classification 被引量:2
20
作者 Muhammad Arif Muhammad Usman Akram Fayyaz-ul-Afsar Amir Minhas 《Journal of Biomedical Science and Engineering》 2010年第4期380-389,共10页
Arrhythmia beat classification is an active area of research in ECG based clinical decision support systems. In this paper, Pruned Fuzzy K-nearest neighbor (PFKNN) classifier is proposed to classify six types of beats... Arrhythmia beat classification is an active area of research in ECG based clinical decision support systems. In this paper, Pruned Fuzzy K-nearest neighbor (PFKNN) classifier is proposed to classify six types of beats present in the MIT-BIH Arrhythmia database. We have tested our classifier on ~ 103100 beats for six beat types present in the database. Fuzzy KNN (FKNN) can be implemented very easily but large number of training examples used for classification can be very time consuming and requires large storage space. Hence, we have proposed a time efficient Arif-Fayyaz pruning algorithm especially suitable for FKNN which can maintain good classification accuracy with appropriate retained ratio of training data. By using Arif-Fayyaz pruning algorithm with Fuzzy KNN, we have achieved a beat classification accuracy of 97% and geometric mean of sensitivity of 94.5% with only 19% of the total training examples. The accuracy and sensitivity is comparable to FKNN when all the training data is used. Principal Component Analysis is used to further reduce the dimension of feature space from eleven to six without compromising the accuracy and sensitivity. PFKNN was found to robust against noise present in the ECG data. 展开更多
关键词 ARRHYTHMIA ECG k-nearest neighbor PRUNING FUZZY Classification
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部