由于GPS无法在楼宇内使用,而目前的楼宇内定位技术一般都需要预先部署额外的设施,因此楼宇内无基础设施定位成为了一个热点研究问题.提出了一种利用Wi-Fi接入点的MAC地址和RSSI(received signal strength indication)值,通过机器分类的...由于GPS无法在楼宇内使用,而目前的楼宇内定位技术一般都需要预先部署额外的设施,因此楼宇内无基础设施定位成为了一个热点研究问题.提出了一种利用Wi-Fi接入点的MAC地址和RSSI(received signal strength indication)值,通过机器分类的方式实现楼宇内房间级定位的算法R-kNN(relativity k-nearest neighbor).R-kNN是一种属性加权k近邻算法,它通过将AP之间的相关性反应在权值的分配上,有效地降低了维度冗余对分类准确率的负面影响.R-kNN没有对房间和AP的物理位置做出任何假设,只需要使用环境中现存的AP就可以取得较好的定位效果,无需部署任何额外设施或修改现有设施.实验结果表明,在AP数量较多的楼宇环境中,R-kNN能够取得比k近邻算法和朴素贝叶斯分类器更好的定位效果.展开更多
针对基于接收信号强度RSS(Received Signal Strength)或信道状态信息CSI(Channel State Information)的室内定位方法在现实环境中定位精度低的问题,提出一种RSS和CSI融合的二阶段室内定位方法。离线训练时采集数据构建指纹库;在线测试...针对基于接收信号强度RSS(Received Signal Strength)或信道状态信息CSI(Channel State Information)的室内定位方法在现实环境中定位精度低的问题,提出一种RSS和CSI融合的二阶段室内定位方法。离线训练时采集数据构建指纹库;在线测试时首先利用RSS和改进的k最近邻kNN(k-Nearest Neighbor)算法进行位置粗略估计,然后根据粗略估计结果筛选参考点构建子指纹库,最后使用高斯核函数改进的k最近邻算法进行位置精确估计。将该定位方法在室内复杂环境和空旷环境两种环境中进行实验验证,定位精度分别达到72.4%和75.9%,并将本文方法与两种现有的经典定位方法 DeepFi和Horus在同一环境中进行比较,实验结果表明该方法能够有效地减小定位误差、提高定位精度。展开更多
文摘针对基于接收信号强度RSS(Received Signal Strength)或信道状态信息CSI(Channel State Information)的室内定位方法在现实环境中定位精度低的问题,提出一种RSS和CSI融合的二阶段室内定位方法。离线训练时采集数据构建指纹库;在线测试时首先利用RSS和改进的k最近邻kNN(k-Nearest Neighbor)算法进行位置粗略估计,然后根据粗略估计结果筛选参考点构建子指纹库,最后使用高斯核函数改进的k最近邻算法进行位置精确估计。将该定位方法在室内复杂环境和空旷环境两种环境中进行实验验证,定位精度分别达到72.4%和75.9%,并将本文方法与两种现有的经典定位方法 DeepFi和Horus在同一环境中进行比较,实验结果表明该方法能够有效地减小定位误差、提高定位精度。