We review the predictions of quark models for multiquark configurations that are bound or resonant states,and compare different methods for estimating the properties of resonances.
Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,...Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,but in-depth understanding the relationship between geometrical configurations and metal-metal interaction mechanisms for designing targeted DACs is still required.In this review,the recent progress in engineering of geometrical configurations of DACs is systematically summarized.Based on the polarity of geometrical configuration,DACs can be classified into two different types that are homonuclear and heteronuclear DACs.Furthermore,with regard to the geometrical configurations of the active sites,homonuclear DACs are identified into adjacent and bridged configurations,and heteronuclear DACs can be classified into adjacent,bridged,and separated configurations.Subsequently,metal-metal interactions in DACs with different geometrical configurations are introduced.Additionally,the applications of DACs in different electrocatalytic reactions are discussed,including the oxygen reduction reaction(ORR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),and other catalysis.Finally,the future challenges and perspectives for advancements in DACs are high-lighted.This review aims to provide inspiration for the design of highly effcient DACs towards energy relatedapplications.展开更多
Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study t...Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.展开更多
Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of g...Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of granular debris during the occurrence of granular debris is essential for precise assessment and effective mitigation of landslide hazards in mountainous terrains. This research aims to investigate the impact of GSD and geometric configurations on sliding and damming properties through laboratory experiments. The geometric configurations were categorized into three categories based on the spatial distribution of maximum volume: located at the front(Type Ⅰ), middle(Type Ⅱ), and rear(Type Ⅲ) of the granular debris. Our experimental findings highlight that the sliding and damming processes primarily depend on the interaction among the geometric configuration, grain size, and GSD in granular debris. Different sliding and damming mechanisms across various geometric configurations induce variability in motion parameters and deposition patterns. For Type Ⅰ configurations, the front debris functions as the critical and primary driving component, with energy dissipation primarily occurring through inter-grain interactions. In contrast, Type Ⅱ configurations feature the middle debris as the dominant driving component, experiencing hindrance from the front debris and propulsion from the rear, leading to complex alterations in sliding motion. Here, energy dissipation arises from a combination of inter-grain and grain-substrate interactions. Lastly, in Type Ⅲ configurations, both the middle and rear debris serve as the main driving components, with the rear sliding debris impeded by the front. In this case, energy dissipation predominantly results from grainsubstrate interaction. Moreover, we have quantitatively demonstrated that the inverse grading in damming deposits, where coarse grain moves upward and fine grain moves downward, is primarily caused by grain sorting due to collisions among the grains and between the grain and the base. The impact of grain on the horizontal channel further aids grain sorting and contributes to inverse grading. The proposed classification of three geometric configurations in our study enhances the understanding of damming properties from the view of mechanism, which provides valuable insights for related study about damming granular debris.展开更多
Vertical Axis Wind Turbines(VAWTs)offer several advantages over horizontal axis wind turbines(HAWTs),including quieter operation,ease of maintenance,and simplified construction.Surprisingly,despite the prevailing beli...Vertical Axis Wind Turbines(VAWTs)offer several advantages over horizontal axis wind turbines(HAWTs),including quieter operation,ease of maintenance,and simplified construction.Surprisingly,despite the prevailing belief that HAWTs outperform VAWTs as individual units,VAWTs demonstrate higher power density when arranged in clusters.This phenomenon arises from positive wake interactions downstream of VAWTs,potentially enhancing the overall wind farm performances.In contrast,wake interactions negatively impact HAWT farms,reducing their efficiency.This paper extensively reviews the potential of VAWT clusters to increase energy output and reduce wind energy costs.A precise terminology is introduced to clarify ambiguous terms researchers use to quantify cluster parameters.While examining commonly studied and proposed VAWT cluster configurations,several aspects are discussed such as aerodynamic interactions,wake characteristics,structural dynamics,and performance metrics.Additionally,the current state-of-the-art and research gaps are critically described.The review also covers computational modeling,optimization techniques,advanced control strategies,machine learning applications,economic considerations,and the influence of terrain and application locations.展开更多
This study investigates the breakdown voltage characteristics in sulfur hexafluoride(SF6)circuit breakers,employing a novel approach that integrates both experimental investigations and finite element simulations.Util...This study investigates the breakdown voltage characteristics in sulfur hexafluoride(SF6)circuit breakers,employing a novel approach that integrates both experimental investigations and finite element simulations.Utilizing a sphere-sphere electrode configuration,we meticulously measured the relationship between breakdown voltage and electrode gap distances ranging from 1 cm to 4.5 cm.Subsequent simulations,conducted using COMSOL Multiphysics,mirrored the experimental setup to validate the model’s accuracy through a comparison of the breakdown voltage-electrode gap distance curves.The simulation results not only aligned closely with the experimental data but also allowed the extraction of detailed electric field strength,electric potential contours,and electric current flow curves at the breakdown voltage for gap distances extending from 1 to 4.5 cm.Extending the analysis,the study explored the electric field and potential distribution at a constant voltage of 72.5 kV for gap distances between 1 to 10 cm,identifying the maximum electric field strength.A comprehensive comparison of five different electrode configurations(sphere-sphere,sphere-rod,sphere-plane,rod-plane,rod-rod)at 72.5 kV and a gap distance of 1.84 cm underscored the significant influence of electrode geometry on the breakdown process.Moreover,the research contrasts the breakdown voltage in SF6 with that in air,emphasizing SF6’s superior insulating properties.This investigation not only elucidates the intricate dynamics of electrical breakdown in SF6 circuit breakers but also contributes valuable insights into the optimal electrode configurations and the potential for alternative insulating gases,steering future advancements in high-voltage circuit breaker technology.展开更多
In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways Hi...In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train.展开更多
Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HR...Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed.展开更多
To compute transonic flows over a complex 3D aircraft configuration, a viscous/inviscid interaction method is developed by coupling an integral boundary-layer solver with an Eluer solver in a "semi-inverse" manner. ...To compute transonic flows over a complex 3D aircraft configuration, a viscous/inviscid interaction method is developed by coupling an integral boundary-layer solver with an Eluer solver in a "semi-inverse" manner. For the turbulent boundary-layer, an integral method using Green's lag equation is coupled with the outer inviscid flow. A blowing velocity approach is used to simulate the displacement effects of the boundary layer. To predict the aerodynamic drag, it is developed a numerical technique called far-field method that is based on the momentum theorem, in which the total drag is divided into three component drags, i.e. viscous, induced and wave-formed. Consequently, it can provide more physical insight into the drag sources than the often-used surface integral technique. The drag decomposition can be achieved with help of the second law of thermodynamics, which implies that entropy increases and total pressure decreases only across shock wave along a streamline of an inviscid non-isentropic flow. This method has been applied to the DLR-F4 wing/body configuration showing results in good agreement with the wind tunnel data.展开更多
This paper presents a general approach for determining the configuration number for any linkage: A kinematic cham (KC) can be divided into some basic kinematic chains (BKCs) and driving joints; there are only 33 kinds...This paper presents a general approach for determining the configuration number for any linkage: A kinematic cham (KC) can be divided into some basic kinematic chains (BKCs) and driving joints; there are only 33 kinds of BKCs with υ =1-4 independent loop, containing only R (revolute) joints and their configuration numbers are given; the configuration number of a KC equals to the multiplication of the configuration numbers of BKCs contained in the KC.展开更多
It is well known that singular configurations are inherent to parallel manipulators and have serious influences on their properties. Therefore, these singular configurations should be avoided in the design and applica...It is well known that singular configurations are inherent to parallel manipulators and have serious influences on their properties. Therefore, these singular configurations should be avoided in the design and application of mechanisms. The researches on the singularity identification and distribution have revealed the relations among the six configuration parameters at singular points. Few works have dealt with the relation between the singularity and the input parameters, as wcll as the properties of the manipulator nearby the singularity. In this paper, taking the semi-regular hexagons 6-6 Gough-Stewart manipulator (SRHGSMP) as an example, the configuration bifurcation characteristics going with the input parameters, the assembly configurations at singular points, and the reasons to cause the singularity are analyzed. The research reveals that the number and the combination of the input parameters have great influences on the complexity of the singularity and the curvature radiuses of the configuration curves. Under different number of input parameters, the dimensional-utmost singularity, line vectors correlation singularity and Jacobian matrix correlation singularity can occur individually or jointly. Choosing the adjacent input parameters, the simple singularity and the large singularity-free input parameters zones can be obtained. And selecting multiple input parameters, the self-motion regions and the singularity avoidance errors can be reduced. These new discoveries are valuable and of significance for the trajectory design, the singularity avoidance, and the self-motion control of the parallel manipulator.展开更多
A series of experimental results of field-reversed configurations(FRCs) on a KMAX(Keda Mirror with AXisymmetricity) tandem mirror machine are reported.Single-side FRC translation processes with three different gas spe...A series of experimental results of field-reversed configurations(FRCs) on a KMAX(Keda Mirror with AXisymmetricity) tandem mirror machine are reported.Single-side FRC translation processes with three different gas species were measured by avalanche photodiodes.Consistent with the theoretical prediction, the measured FRC speeds were inversely proportional to the square root of the ion mass.However, the speeds of the hydrogen FRC increased even in a uniform magnetic field region while the speeds of the helium and argon FRCs decreased.Possible mechanisms are discussed.The speed of the second pass due to the reflection of the mirror fields was found to be ~1/3 of the first pass speed.The internal magnetic fields were measured for a colliding-merging argon FRC, and the results show that, even for very slowmoving FRCs, merging can occur.展开更多
The urban heat island(UHI) effect has significant effects on the quality of life and public health. Numerous studies have addressed the relationship between UHI and the increase in urban impervious surface area(ISA), ...The urban heat island(UHI) effect has significant effects on the quality of life and public health. Numerous studies have addressed the relationship between UHI and the increase in urban impervious surface area(ISA), but few of them have considered the impact of the spatial configuration of ISA on UHI. Land surface temperature(LST) may be affected not only by urban land cover, but also by neighboring land cover. The aim of this research was to investigate the effects of the abundance and spatial association of ISAs on LST. Taking Harbin City, China as an example, the impact of ISA spatial association on LST measurements was examined. The abundance of ISAs and the LST measurements were derived from Landsat Thematic Mapper(TM) imagery of 2000 and 2010, and the spatial association patterns of ISAs were calculated using the local Moran’s I index. The impacts of ISA abundance and spatial association on LST were examined using correlation analysis. The results suggested that LST has significant positive associations with both ISA abundance and the Moran’s I index of ISAs, indicating that both the abundance and spatial clustering of ISAs contribute to elevated values of LST. It was also found that LST is positively associated with clustering of high-ISA-percentage areas(i.e.,>50%) and negatively associated with clustering of low-ISA-percentage areas(i.e.,<25%). The results suggest that, in addition to the abundance of ISAs,their spatial association has a significant effect on UHIs.展开更多
This work focuses on drop breakage for liquid-liquid system with an adoption of numerical simulation by using computational fluid dynamics and population balance model (PBM) coupled with two-fluid model (TFM). Two dif...This work focuses on drop breakage for liquid-liquid system with an adoption of numerical simulation by using computational fluid dynamics and population balance model (PBM) coupled with two-fluid model (TFM). Two different breakage kernels based on identical breakage mechanism but different descriptions of breaking time are take n into account in this work. Eight cases corresp on ding to distinct configurations of agitator are carried out to validate numerical predictions, namely agitators with different porosity and hole diameters, respectively implemented in Cases 1 to 5 and Cases 6 to 8. The results are compared with experimental data for testing the applicability of both kernels. Simulations are implemented, in this work, with an approach of class method for the solution of population balance model by the special-purpose computational fluid dynamics solver Fluent 16.1 based on finite volume method, and the grids used for meshing the solution domain are accomplished in a commercial software Gambit 2.4.6. The effects of configurations of agitator corresponding to different parameters mentioned above on final Sauter mean diameter are equally concentrated in this work. Analysis of both kernels and comparisons with experimental results reveal that, the second kernel has more decent agreement with experiments, and the results of investigations on effects of agitator configurations show that the in fluences of these parameters on Sauter mean diameter are marginal, but appropriate porosity and hole diameter are actually able to decrease Sauter mean diameter. These outcomes allow us to draw general conclusions and help investigate performances of liquid-liquid system.展开更多
Seven distributors with different configurations are designed and optimized by constructal approach. Their flow distribution performance and energy dissipation are investigated and compared by computational fluid dyna...Seven distributors with different configurations are designed and optimized by constructal approach. Their flow distribution performance and energy dissipation are investigated and compared by computational fluid dynamics (CFD) simulation. The reliability of CFD simulation is verified by experiments on the distributor that has all distributing rectangle channels on a plate. The results show that the symmetry of the distributing channels has decisive influence on the performance of flow distribution. Increasing the generations of channel branching will improve the flow distribution uniformity, but on the other hand increase the energy dissipation. Among all the seven constructal distributors, the distributor that has dichotomy configuration, Y-type junctions and straight interconnecting channels, is recommended for its better flow distribution performance and less energy dissipation.展开更多
Statistical models combined with the local plasma frequency approach applied to the atomic electron density are employed to study the photoionization cross-section for complex atoms.It is demonstrated that the Thomas...Statistical models combined with the local plasma frequency approach applied to the atomic electron density are employed to study the photoionization cross-section for complex atoms.It is demonstrated that the Thomas–Fermi atom provides surprisingly good overall agreement even for complex outer-shell configurations,where quantum mechanical approaches that include electron correlations are exceedingly difficult.Quantum mechanical photoionization calculations are studied with respect to energy and nl quantum number for hydrogen-like and non-hydrogen-like atoms and ions.Ageneralized scaled photoionizationmodel(GSPM)based on the simultaneous introduction of effective charges for non-H-like energies and scaling charges for the reduced energy scale allows the development of analytical formulas for all states nl.Explicit expressions for nl1s,2s,2p,3s,3p,3d,4s,4p,4d,4f,and 5s are obtained.Application to H-like and non-H-like atoms and ions and to neutral atoms demonstrates the universality of the scaled analytical approach including inner-shell photoionization.Likewise,GSPMdescribes the near-threshold behavior and high-energy asymptotes well.Finally,we discuss the various models and the correspondence principle along with experimental data and with respect to a good compromise between generality and precision.The results are also relevant to large-scale integrated light–matter interaction simulations,e.g.,X-ray free-electron laser interactions with matter or photoionization driven by a broadband radiation field such as Planckian radiation.展开更多
When robot is at singular configuration, the limited hand velocity wouldrequire some joints with infeasible speeds so as to lead unsafely of the system. A method of solvingthe approximate velocity of joint near singul...When robot is at singular configuration, the limited hand velocity wouldrequire some joints with infeasible speeds so as to lead unsafely of the system. A method of solvingthe approximate velocity of joint near singular configuration point by adding damped vector isproposed and a modified algorithm is provided. With the analysis of J^(-1) the singularconfigurations of 6R robot are divided into structure boundary singularity , boundary singularity ,inner singularity and wrist singularity. The conditions of singularities of the robot have beenascertained. The computer simulations of the singularities of the robot are developed, which havemany advantages over previous description methods of the singular configurations of robot. With thehelp of boundary singularity analysis, a application in welding trajectory planning checking of therobot has been carried out and the simulation result proved visualized and useful.展开更多
We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the...We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the solutions of the Riemann problem in the flow direction, consisting of two shocks, one vortex sheet, and one entropy wave, which is one of the core multi-wave configurations for the two-dimensional Euler equations. It is proved that such steady four-wave configurations in supersonic flow are stable in structure globally, even under the BV perturbation of the incoming flow in the flow direction. In order to achieve this, we first formulate the problem as the Cauchy problem (initial value problem) in the flow direction, and then develop a modified Glimm difference scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves, but also between the strong vortex sheet/entropy wave and weak waves. The key feature of the Euler equations is that the reflection coefficient is always less than 1, when a weak wave of different family interacts with the strong vortex sheet/entropy wave or the shock wave, which is crucial to guarantee that the Glimm functional is decreasing. Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution, close to the background solution of steady four-wave configuration.展开更多
The production process plan design and configurations of reconfigurable machine tool (RMT) interact with each other. Reasonable process plans with suitable configurations of RMT help to improve product quality and r...The production process plan design and configurations of reconfigurable machine tool (RMT) interact with each other. Reasonable process plans with suitable configurations of RMT help to improve product quality and reduce production cost. Therefore, a cooperative strategy is needed to concurrently solve the above issue. In this paper, the cooperative optimization model for RMT configurations and production process plan is presented. Its objectives take into account both impacts of process and configuration. Moreover, a novel genetic algorithm is also developed to provide optimal or near-optimal solutions: firstly, its chromosome is redesigned which is composed of three parts, operations, process plan and configurations of RMTs, respectively; secondly, its new selection, crossover and mutation operators are also developed to deal with the process constraints from operation processes (OP) graph, otherwise these operators could generate illegal solutions violating the limits; eventually the optimal configurations for RMT under optimal process plan design can be obtained. At last, a manufacturing line case is applied which is composed of three RMTs. It is shown from the case that the optimal process plan and configurations of RMT are concurrently obtained, and the production cost decreases 6.28% and nonmonetary performance increases 22%. The proposed method can figure out both RMT configurations and production process, improve production capacity, functions and equipment utilization for RMT.展开更多
Because of the increasingly prominent problem of alumina content inhomogeneity in large or super-scale aluminum reduction cells,a transient numerical model for the alumina mixing process was developed for a400kA cell,...Because of the increasingly prominent problem of alumina content inhomogeneity in large or super-scale aluminum reduction cells,a transient numerical model for the alumina mixing process was developed for a400kA cell,and the relationship between the alumina content distribution and electrolyte flow field was analyzed.In the ANSYS software platform,several numerical simulation cases were presented to display the influence of the feeder configuration on the alumina mixing characteristics.The results showed that a large vortex flow of the molten electrolyte is beneficial for alumina mixing and uniform distribution in the inner areas of the vortexes.The alumina particles reach the inter-electrode zone in10?15s from the beginning of the feeding action,and the risk of early precipitation occurs in10?25s after the feeding.It was also found that a suitable grouping of feeders could reduce the content fluctuation and gradient.Therefore,a feeding on demand strategy was proposed,and the simulation results showed that although the spatial characteristics are not changed,the uniformity of the alumina content was markedly improved.展开更多
文摘We review the predictions of quark models for multiquark configurations that are bound or resonant states,and compare different methods for estimating the properties of resonances.
基金supported by the Natural Science Foundation of China (22179062,52125202,and U2004209)the Natural Science Foundation of Jiangsu Province (BK20230035)+1 种基金the Fundamental Research Funds for the Central Universities (30922010303)the Intergovernmental Cooperation Projects in the National Key Research and Development Plan of the Ministry of Science and Technology of PRC (2022YFE0196800)
文摘Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,but in-depth understanding the relationship between geometrical configurations and metal-metal interaction mechanisms for designing targeted DACs is still required.In this review,the recent progress in engineering of geometrical configurations of DACs is systematically summarized.Based on the polarity of geometrical configuration,DACs can be classified into two different types that are homonuclear and heteronuclear DACs.Furthermore,with regard to the geometrical configurations of the active sites,homonuclear DACs are identified into adjacent and bridged configurations,and heteronuclear DACs can be classified into adjacent,bridged,and separated configurations.Subsequently,metal-metal interactions in DACs with different geometrical configurations are introduced.Additionally,the applications of DACs in different electrocatalytic reactions are discussed,including the oxygen reduction reaction(ORR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),and other catalysis.Finally,the future challenges and perspectives for advancements in DACs are high-lighted.This review aims to provide inspiration for the design of highly effcient DACs towards energy relatedapplications.
基金National Key R&D Program of China under Grant No.2022YFC3003603。
文摘Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.
基金support of the National Natural Science Foundation of China(U20A20111,42107189).
文摘Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of granular debris during the occurrence of granular debris is essential for precise assessment and effective mitigation of landslide hazards in mountainous terrains. This research aims to investigate the impact of GSD and geometric configurations on sliding and damming properties through laboratory experiments. The geometric configurations were categorized into three categories based on the spatial distribution of maximum volume: located at the front(Type Ⅰ), middle(Type Ⅱ), and rear(Type Ⅲ) of the granular debris. Our experimental findings highlight that the sliding and damming processes primarily depend on the interaction among the geometric configuration, grain size, and GSD in granular debris. Different sliding and damming mechanisms across various geometric configurations induce variability in motion parameters and deposition patterns. For Type Ⅰ configurations, the front debris functions as the critical and primary driving component, with energy dissipation primarily occurring through inter-grain interactions. In contrast, Type Ⅱ configurations feature the middle debris as the dominant driving component, experiencing hindrance from the front debris and propulsion from the rear, leading to complex alterations in sliding motion. Here, energy dissipation arises from a combination of inter-grain and grain-substrate interactions. Lastly, in Type Ⅲ configurations, both the middle and rear debris serve as the main driving components, with the rear sliding debris impeded by the front. In this case, energy dissipation predominantly results from grainsubstrate interaction. Moreover, we have quantitatively demonstrated that the inverse grading in damming deposits, where coarse grain moves upward and fine grain moves downward, is primarily caused by grain sorting due to collisions among the grains and between the grain and the base. The impact of grain on the horizontal channel further aids grain sorting and contributes to inverse grading. The proposed classification of three geometric configurations in our study enhances the understanding of damming properties from the view of mechanism, which provides valuable insights for related study about damming granular debris.
文摘Vertical Axis Wind Turbines(VAWTs)offer several advantages over horizontal axis wind turbines(HAWTs),including quieter operation,ease of maintenance,and simplified construction.Surprisingly,despite the prevailing belief that HAWTs outperform VAWTs as individual units,VAWTs demonstrate higher power density when arranged in clusters.This phenomenon arises from positive wake interactions downstream of VAWTs,potentially enhancing the overall wind farm performances.In contrast,wake interactions negatively impact HAWT farms,reducing their efficiency.This paper extensively reviews the potential of VAWT clusters to increase energy output and reduce wind energy costs.A precise terminology is introduced to clarify ambiguous terms researchers use to quantify cluster parameters.While examining commonly studied and proposed VAWT cluster configurations,several aspects are discussed such as aerodynamic interactions,wake characteristics,structural dynamics,and performance metrics.Additionally,the current state-of-the-art and research gaps are critically described.The review also covers computational modeling,optimization techniques,advanced control strategies,machine learning applications,economic considerations,and the influence of terrain and application locations.
基金Ningbo Science and Technology Plan Project(Grant No.2023Z043)。
文摘This study investigates the breakdown voltage characteristics in sulfur hexafluoride(SF6)circuit breakers,employing a novel approach that integrates both experimental investigations and finite element simulations.Utilizing a sphere-sphere electrode configuration,we meticulously measured the relationship between breakdown voltage and electrode gap distances ranging from 1 cm to 4.5 cm.Subsequent simulations,conducted using COMSOL Multiphysics,mirrored the experimental setup to validate the model’s accuracy through a comparison of the breakdown voltage-electrode gap distance curves.The simulation results not only aligned closely with the experimental data but also allowed the extraction of detailed electric field strength,electric potential contours,and electric current flow curves at the breakdown voltage for gap distances extending from 1 to 4.5 cm.Extending the analysis,the study explored the electric field and potential distribution at a constant voltage of 72.5 kV for gap distances between 1 to 10 cm,identifying the maximum electric field strength.A comprehensive comparison of five different electrode configurations(sphere-sphere,sphere-rod,sphere-plane,rod-plane,rod-rod)at 72.5 kV and a gap distance of 1.84 cm underscored the significant influence of electrode geometry on the breakdown process.Moreover,the research contrasts the breakdown voltage in SF6 with that in air,emphasizing SF6’s superior insulating properties.This investigation not only elucidates the intricate dynamics of electrical breakdown in SF6 circuit breakers but also contributes valuable insights into the optimal electrode configurations and the potential for alternative insulating gases,steering future advancements in high-voltage circuit breaker technology.
基金funded by the National Natural Science Foundation of China(52167013)the Key Program of Natural Science Foundation of Gansu Province(24JRRA225)Natural Science Foundation of Gansu Province(23JRRA891).
文摘In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train.
基金Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,ChinaProject(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China+3 种基金Project(50971087)supported by the National Natural Science Foundation of China,ChinaProjects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,ChinaProject(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,ChinaProject(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
文摘Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed.
文摘To compute transonic flows over a complex 3D aircraft configuration, a viscous/inviscid interaction method is developed by coupling an integral boundary-layer solver with an Eluer solver in a "semi-inverse" manner. For the turbulent boundary-layer, an integral method using Green's lag equation is coupled with the outer inviscid flow. A blowing velocity approach is used to simulate the displacement effects of the boundary layer. To predict the aerodynamic drag, it is developed a numerical technique called far-field method that is based on the momentum theorem, in which the total drag is divided into three component drags, i.e. viscous, induced and wave-formed. Consequently, it can provide more physical insight into the drag sources than the often-used surface integral technique. The drag decomposition can be achieved with help of the second law of thermodynamics, which implies that entropy increases and total pressure decreases only across shock wave along a streamline of an inviscid non-isentropic flow. This method has been applied to the DLR-F4 wing/body configuration showing results in good agreement with the wind tunnel data.
文摘This paper presents a general approach for determining the configuration number for any linkage: A kinematic cham (KC) can be divided into some basic kinematic chains (BKCs) and driving joints; there are only 33 kinds of BKCs with υ =1-4 independent loop, containing only R (revolute) joints and their configuration numbers are given; the configuration number of a KC equals to the multiplication of the configuration numbers of BKCs contained in the KC.
基金supported by National Natural Science Foundation of China (Grant No. 50375111/50675188)
文摘It is well known that singular configurations are inherent to parallel manipulators and have serious influences on their properties. Therefore, these singular configurations should be avoided in the design and application of mechanisms. The researches on the singularity identification and distribution have revealed the relations among the six configuration parameters at singular points. Few works have dealt with the relation between the singularity and the input parameters, as wcll as the properties of the manipulator nearby the singularity. In this paper, taking the semi-regular hexagons 6-6 Gough-Stewart manipulator (SRHGSMP) as an example, the configuration bifurcation characteristics going with the input parameters, the assembly configurations at singular points, and the reasons to cause the singularity are analyzed. The research reveals that the number and the combination of the input parameters have great influences on the complexity of the singularity and the curvature radiuses of the configuration curves. Under different number of input parameters, the dimensional-utmost singularity, line vectors correlation singularity and Jacobian matrix correlation singularity can occur individually or jointly. Choosing the adjacent input parameters, the simple singularity and the large singularity-free input parameters zones can be obtained. And selecting multiple input parameters, the self-motion regions and the singularity avoidance errors can be reduced. These new discoveries are valuable and of significance for the trajectory design, the singularity avoidance, and the self-motion control of the parallel manipulator.
基金supported by the National Key R&D Program of China (Nos.2017YFA0402500 and 2017YFE0301802)National Natural Science Foundation (No.11475172)the Key Research Program of Frontier Sciences, CAS (No.QYZDJ-SSW-DQC010)
文摘A series of experimental results of field-reversed configurations(FRCs) on a KMAX(Keda Mirror with AXisymmetricity) tandem mirror machine are reported.Single-side FRC translation processes with three different gas species were measured by avalanche photodiodes.Consistent with the theoretical prediction, the measured FRC speeds were inversely proportional to the square root of the ion mass.However, the speeds of the hydrogen FRC increased even in a uniform magnetic field region while the speeds of the helium and argon FRCs decreased.Possible mechanisms are discussed.The speed of the second pass due to the reflection of the mirror fields was found to be ~1/3 of the first pass speed.The internal magnetic fields were measured for a colliding-merging argon FRC, and the results show that, even for very slowmoving FRCs, merging can occur.
基金Under the auspices of the National Social Science Foundation of China(No.16BJY039)
文摘The urban heat island(UHI) effect has significant effects on the quality of life and public health. Numerous studies have addressed the relationship between UHI and the increase in urban impervious surface area(ISA), but few of them have considered the impact of the spatial configuration of ISA on UHI. Land surface temperature(LST) may be affected not only by urban land cover, but also by neighboring land cover. The aim of this research was to investigate the effects of the abundance and spatial association of ISAs on LST. Taking Harbin City, China as an example, the impact of ISA spatial association on LST measurements was examined. The abundance of ISAs and the LST measurements were derived from Landsat Thematic Mapper(TM) imagery of 2000 and 2010, and the spatial association patterns of ISAs were calculated using the local Moran’s I index. The impacts of ISA abundance and spatial association on LST were examined using correlation analysis. The results suggested that LST has significant positive associations with both ISA abundance and the Moran’s I index of ISAs, indicating that both the abundance and spatial clustering of ISAs contribute to elevated values of LST. It was also found that LST is positively associated with clustering of high-ISA-percentage areas(i.e.,>50%) and negatively associated with clustering of low-ISA-percentage areas(i.e.,<25%). The results suggest that, in addition to the abundance of ISAs,their spatial association has a significant effect on UHIs.
基金Supported by the National Natural Science Foundation of China(21776180,21306116)
文摘This work focuses on drop breakage for liquid-liquid system with an adoption of numerical simulation by using computational fluid dynamics and population balance model (PBM) coupled with two-fluid model (TFM). Two different breakage kernels based on identical breakage mechanism but different descriptions of breaking time are take n into account in this work. Eight cases corresp on ding to distinct configurations of agitator are carried out to validate numerical predictions, namely agitators with different porosity and hole diameters, respectively implemented in Cases 1 to 5 and Cases 6 to 8. The results are compared with experimental data for testing the applicability of both kernels. Simulations are implemented, in this work, with an approach of class method for the solution of population balance model by the special-purpose computational fluid dynamics solver Fluent 16.1 based on finite volume method, and the grids used for meshing the solution domain are accomplished in a commercial software Gambit 2.4.6. The effects of configurations of agitator corresponding to different parameters mentioned above on final Sauter mean diameter are equally concentrated in this work. Analysis of both kernels and comparisons with experimental results reveal that, the second kernel has more decent agreement with experiments, and the results of investigations on effects of agitator configurations show that the in fluences of these parameters on Sauter mean diameter are marginal, but appropriate porosity and hole diameter are actually able to decrease Sauter mean diameter. These outcomes allow us to draw general conclusions and help investigate performances of liquid-liquid system.
基金Supported by the National Natural Science Foundation of China (20476026), the Program for New Century Excellent Talents in University (05-0416), the Creative Team Development Project of Ministry of Education (IRT0721), and the 111 Project of Ministry of Education and State Administration of Foreign Experts Affairs (B08021 ).
文摘Seven distributors with different configurations are designed and optimized by constructal approach. Their flow distribution performance and energy dissipation are investigated and compared by computational fluid dynamics (CFD) simulation. The reliability of CFD simulation is verified by experiments on the distributor that has all distributing rectangle channels on a plate. The results show that the symmetry of the distributing channels has decisive influence on the performance of flow distribution. Increasing the generations of channel branching will improve the flow distribution uniformity, but on the other hand increase the energy dissipation. Among all the seven constructal distributors, the distributor that has dichotomy configuration, Y-type junctions and straight interconnecting channels, is recommended for its better flow distribution performance and less energy dissipation.
基金The work described here was supported by the Cooperation Agreement between the Sorbonne University,Faculty of Sciences(Pierre and Marie Curie)and the Moscow Institute of Physics and Technology MIPTFinancial support from MIPT in the framework of Grant No.075-02-2019-967 and the 5-top-100 program is greatly acknowledgedThis work has also been supported by the Competitiveness Program of NRNU MEPhI in the framework of the Russian Academic Excellence Project.
文摘Statistical models combined with the local plasma frequency approach applied to the atomic electron density are employed to study the photoionization cross-section for complex atoms.It is demonstrated that the Thomas–Fermi atom provides surprisingly good overall agreement even for complex outer-shell configurations,where quantum mechanical approaches that include electron correlations are exceedingly difficult.Quantum mechanical photoionization calculations are studied with respect to energy and nl quantum number for hydrogen-like and non-hydrogen-like atoms and ions.Ageneralized scaled photoionizationmodel(GSPM)based on the simultaneous introduction of effective charges for non-H-like energies and scaling charges for the reduced energy scale allows the development of analytical formulas for all states nl.Explicit expressions for nl1s,2s,2p,3s,3p,3d,4s,4p,4d,4f,and 5s are obtained.Application to H-like and non-H-like atoms and ions and to neutral atoms demonstrates the universality of the scaled analytical approach including inner-shell photoionization.Likewise,GSPMdescribes the near-threshold behavior and high-energy asymptotes well.Finally,we discuss the various models and the correspondence principle along with experimental data and with respect to a good compromise between generality and precision.The results are also relevant to large-scale integrated light–matter interaction simulations,e.g.,X-ray free-electron laser interactions with matter or photoionization driven by a broadband radiation field such as Planckian radiation.
基金This project is supported by Natonal Natural Science Foundation of China (No.50128504).
文摘When robot is at singular configuration, the limited hand velocity wouldrequire some joints with infeasible speeds so as to lead unsafely of the system. A method of solvingthe approximate velocity of joint near singular configuration point by adding damped vector isproposed and a modified algorithm is provided. With the analysis of J^(-1) the singularconfigurations of 6R robot are divided into structure boundary singularity , boundary singularity ,inner singularity and wrist singularity. The conditions of singularities of the robot have beenascertained. The computer simulations of the singularities of the robot are developed, which havemany advantages over previous description methods of the singular configurations of robot. With thehelp of boundary singularity analysis, a application in welding trajectory planning checking of therobot has been carried out and the simulation result proved visualized and useful.
基金supported in part by the UK Engineering and Physical Sciences Research Council Award EP/E035027/1 and EP/L015811/1
文摘We are concerned with the stability of steady multi-wave configurations for the full Euler equations of compressible fluid flow. In this paper, we focus on the stability of steady four-wave configurations that are the solutions of the Riemann problem in the flow direction, consisting of two shocks, one vortex sheet, and one entropy wave, which is one of the core multi-wave configurations for the two-dimensional Euler equations. It is proved that such steady four-wave configurations in supersonic flow are stable in structure globally, even under the BV perturbation of the incoming flow in the flow direction. In order to achieve this, we first formulate the problem as the Cauchy problem (initial value problem) in the flow direction, and then develop a modified Glimm difference scheme and identify a Glimm-type functional to obtain the required BV estimates by tracing the interactions not only between the strong shocks and weak waves, but also between the strong vortex sheet/entropy wave and weak waves. The key feature of the Euler equations is that the reflection coefficient is always less than 1, when a weak wave of different family interacts with the strong vortex sheet/entropy wave or the shock wave, which is crucial to guarantee that the Glimm functional is decreasing. Then these estimates are employed to establish the convergence of the approximate solutions to a global entropy solution, close to the background solution of steady four-wave configuration.
基金supported by National Natural Science Foundation of China (Grant Nos. 51005169, 50875187, 50975209)Shanghai Municipal Natural Science Foundation of China (Grant No. 10ZR1432300)+1 种基金International Science & Technology Cooperation Program of China (Grant No. 2012DFG72210)Zhejiang Provincial Key International Science & Technology Cooperation Program of China (Grant No. 2011C14025)
文摘The production process plan design and configurations of reconfigurable machine tool (RMT) interact with each other. Reasonable process plans with suitable configurations of RMT help to improve product quality and reduce production cost. Therefore, a cooperative strategy is needed to concurrently solve the above issue. In this paper, the cooperative optimization model for RMT configurations and production process plan is presented. Its objectives take into account both impacts of process and configuration. Moreover, a novel genetic algorithm is also developed to provide optimal or near-optimal solutions: firstly, its chromosome is redesigned which is composed of three parts, operations, process plan and configurations of RMTs, respectively; secondly, its new selection, crossover and mutation operators are also developed to deal with the process constraints from operation processes (OP) graph, otherwise these operators could generate illegal solutions violating the limits; eventually the optimal configurations for RMT under optimal process plan design can be obtained. At last, a manufacturing line case is applied which is composed of three RMTs. It is shown from the case that the optimal process plan and configurations of RMT are concurrently obtained, and the production cost decreases 6.28% and nonmonetary performance increases 22%. The proposed method can figure out both RMT configurations and production process, improve production capacity, functions and equipment utilization for RMT.
基金Projects(51574289,61533020,51674300)supported by the National Natural Science Foundation of ChinaProject(2015CXS017)supported by Innovation-driven Plan in Central South University,China
文摘Because of the increasingly prominent problem of alumina content inhomogeneity in large or super-scale aluminum reduction cells,a transient numerical model for the alumina mixing process was developed for a400kA cell,and the relationship between the alumina content distribution and electrolyte flow field was analyzed.In the ANSYS software platform,several numerical simulation cases were presented to display the influence of the feeder configuration on the alumina mixing characteristics.The results showed that a large vortex flow of the molten electrolyte is beneficial for alumina mixing and uniform distribution in the inner areas of the vortexes.The alumina particles reach the inter-electrode zone in10?15s from the beginning of the feeding action,and the risk of early precipitation occurs in10?25s after the feeding.It was also found that a suitable grouping of feeders could reduce the content fluctuation and gradient.Therefore,a feeding on demand strategy was proposed,and the simulation results showed that although the spatial characteristics are not changed,the uniformity of the alumina content was markedly improved.