期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Properties of k-quasi-*-A(n) Operator
1
作者 zuo fei SHEN Jun-li 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期375-381,共7页
An operator T is called k-quasi-*-A(n) operator, if T^(*k)|T^(1+n)|^(2/(1+n))T^k ≥T^(*k)|T~* |~2T^k , k ∈ Z, which is a generalization of quasi-*-A(n) operator. In this paper we prove some properties of k-quasi-*-A(... An operator T is called k-quasi-*-A(n) operator, if T^(*k)|T^(1+n)|^(2/(1+n))T^k ≥T^(*k)|T~* |~2T^k , k ∈ Z, which is a generalization of quasi-*-A(n) operator. In this paper we prove some properties of k-quasi-*-A(n) operator, such as, if T is a k-quasi-*-A(n) operator and N(T )■N(T~* ), then its point spectrum and joint point spectrum are identical. Using these results, we also prove that if T is a k-quasi-*-A(n) operator and N(T )■N(T ), then the spectral mapping theorem holds for the Weyl spectrum and for the essential approximate point spectrum. 展开更多
关键词 k-quasi-*-a(n) operator QUASISIMILARITY single valued extension property Weyl spectrum essential approximate point spectrum
下载PDF
ALGEBRAIC EXTENSION OF *-A OPERATOR
2
作者 左红亮 左飞 《Acta Mathematica Scientia》 SCIE CSCD 2014年第6期1885-1891,共7页
In this paper, we study various properties of algebraic extension of *-A operator.Specifically, we show that every algebraic extension of *-A operator has SVEP and is isoloid.And if T is an algebraic extension of *... In this paper, we study various properties of algebraic extension of *-A operator.Specifically, we show that every algebraic extension of *-A operator has SVEP and is isoloid.And if T is an algebraic extension of *-A operator, then Weyl's theorem holds for f(T), where f is an analytic functions on some neighborhood of σ(T) and not constant on each of the components of its domain. 展开更多
关键词 algebraic extension of *-a operator SVEP isoloid Weyl's theorem
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部