In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equat...In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes.展开更多
In this paper, sufficient conditions are obtained for the tive steady state of the delay-logistic equation to be a global attractor.An application of the results also solves aa conjecture of Gopalsamy.
Accurate prediction of tropical cyclone(TC)intensity remains a challenge due to the complex physical processes involved in TC intensity changes.A seven-day TC intensity prediction scheme based on the logistic growth e...Accurate prediction of tropical cyclone(TC)intensity remains a challenge due to the complex physical processes involved in TC intensity changes.A seven-day TC intensity prediction scheme based on the logistic growth equation(LGE)for the western North Pacific(WNP)has been developed using the observed and reanalysis data.In the LGE,TC intensity change is determined by a growth term and a decay term.These two terms are comprised of four free parameters which include a time-dependent growth rate,a maximum potential intensity(MPI),and two constants.Using 33 years of training samples,optimal predictors are selected first,and then the two constants are determined based on the least square method,forcing the regressed growth rate from the optimal predictors to be as close to the observed as possible.The estimation of the growth rate is further refined based on a step-wise regression(SWR)method and a machine learning(ML)method for the period 1982−2014.Using the LGE-based scheme,a total of 80 TCs during 2015−17 are used to make independent forecasts.Results show that the root mean square errors of the LGE-based scheme are much smaller than those of the official intensity forecasts from the China Meteorological Administration(CMA),especially for TCs in the coastal regions of East Asia.Moreover,the scheme based on ML demonstrates better forecast skill than that based on SWR.The new prediction scheme offers strong potential for both improving the forecasts for rapid intensification and weakening of TCs as well as for extending the 5-day forecasts currently issued by the CMA to 7-day forecasts.展开更多
In this paper, we study the Logistic type equation x= a(t)x -b(t)x^2+ e(t). Under the assumptions that e(t) is small enough and a(t), b(t) are contained in some positive intervals, we prove that this equa...In this paper, we study the Logistic type equation x= a(t)x -b(t)x^2+ e(t). Under the assumptions that e(t) is small enough and a(t), b(t) are contained in some positive intervals, we prove that this equation has a positive bounded solution which is stable. Moreover, this solution is a periodic solution if a(t), b(t) and e(t) are periodic functions, and this solution is an almost periodic solution if a(t), b(t) and e(t) are almost periodic functions.展开更多
This paper studies the global attractivity of the positive equilibrium 1 of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n=0,1,2,...,(*)where {p n} is a sequence of positive real n...This paper studies the global attractivity of the positive equilibrium 1 of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n=0,1,2,...,(*)where {p n} is a sequence of positive real numbers, {τ(n)} is a nondecreasing sequence of integers, τ(n)<n and lim n→∞τ(n)=∞ .It is proved that ifnj=τ(n)p j≤54 for sufficiently large n and ∞j=0p j=∞,then all positive solutions of Eq.(*) tend to 1 as n→∞ .The results improve the existing results in literature.展开更多
In this paper, we used two different algorithms to solve some partial differential equations, where these equations originated from the well-known two parameters of logistic distributions. The first method was the cla...In this paper, we used two different algorithms to solve some partial differential equations, where these equations originated from the well-known two parameters of logistic distributions. The first method was the classical one that involved solving a triply of partial differential equations. The second approach was the well-known Darboux Theory. We found that the geodesic equations are a pair of isotropic curves or minimal curves. As expected, the two methods reached the same result.展开更多
Growth rate of Yarrowia lipolytica NCIM 3589 was observed in a fermentation medium consisting of peptone, yeast extract, sodium chloride. Logistic equation was fitted to the growth data (time vs. biomass concentration...Growth rate of Yarrowia lipolytica NCIM 3589 was observed in a fermentation medium consisting of peptone, yeast extract, sodium chloride. Logistic equation was fitted to the growth data (time vs. biomass concentration) and compared with the prediction given by Artificial Neural Networks (ANN). ANN was found to be superior in describing growth characteristics. A single MATLAB programme is developed to fit the growth data by logistic equation and ANN.展开更多
In this paper, operational matrices of Bernstein polynomials (BPs) are presented for solving the non-linear fractional Logistic differential equation (FLDE). The fractional derivative is described in the Riemann-Liouv...In this paper, operational matrices of Bernstein polynomials (BPs) are presented for solving the non-linear fractional Logistic differential equation (FLDE). The fractional derivative is described in the Riemann-Liouville sense. The operational matrices for the fractional integration in the Riemann-Liouville sense and the product are used to reduce FLDE to the solution of non-linear system of algebraic equations using Newton iteration method. Numerical results are introduced to satisfy the accuracy and the applicability of the proposed method.展开更多
We have written a new equation to study the statistics of earthquake distributions. We call this equation “the generalized logistic equation”. The Gutenberg-Richter frequency-magnitude formula was derived from the s...We have written a new equation to study the statistics of earthquake distributions. We call this equation “the generalized logistic equation”. The Gutenberg-Richter frequency-magnitude formula was derived from the solution of the generalized logistic equation as an asymptotic case for the approximation of large magnitudes. To illustrate how the solution of the generalized logistic equation works, it was used to approximate the observed cumulative distribution of earthquakes in four different geological provinces: the Central Atlantic (40N - 25N, 5W - 35W), Canary Islands, Magellan Mountains (20N - 9S, 148E - 170E), and the Sea of Japan. This approximation showed an excellent correlation between the theoretical curves and observed data for earthquakes of magnitudes 1 < m < 9.展开更多
In the present paper, we consider the existence of positive periodic solutions for a kind of delay Logistic equations. By using a fixed point theorem in cones, we give some new existence results of single and multiple...In the present paper, we consider the existence of positive periodic solutions for a kind of delay Logistic equations. By using a fixed point theorem in cones, we give some new existence results of single and multiple positive periodic solutions for a kind of delay Logistic equations. Some biomathematical models are presented to illustrate our results.展开更多
Consider the nonautonomous delay logistic equation △yn=pnyn(1-yn-ln/k),n≥0, where {Pn}n≥0 is a sequence of nonnegative real numbers, {In}n≥0 is a sequence of positive integers satisfying n→∞lim(n-ln)=∞, and...Consider the nonautonomous delay logistic equation △yn=pnyn(1-yn-ln/k),n≥0, where {Pn}n≥0 is a sequence of nonnegative real numbers, {In}n≥0 is a sequence of positive integers satisfying n→∞lim(n-ln)=∞, and k is a positive constant. Only solutions which are positive for n ≥ 0 are considered. We obtain a new sufficient for all positive solutions of (1) to oscillate about k which contains the corresponding result in [2] when i = 1.展开更多
The author studied the existence of positive solutions of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n =0,1,2,.... where { p n } is a sequence of positive real numbers, { τ(n) } is a nondecreas...The author studied the existence of positive solutions of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n =0,1,2,.... where { p n } is a sequence of positive real numbers, { τ(n) } is a nondecreasing sequence of integers, τ(n)<n and lim n →∞ τ(n) =∞. A sufficient condition for the existence of positive solutions of the equation was given.展开更多
文摘In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes.
文摘In this paper, sufficient conditions are obtained for the tive steady state of the delay-logistic equation to be a global attractor.An application of the results also solves aa conjecture of Gopalsamy.
基金This study is supported by the National Key R&D Program of China(Grant Nos.2017YFC1501604 and 2019YFC1509101)the National Natural Science Foundation of China(Grant Nos.41875114,41875057,and 91937302).
文摘Accurate prediction of tropical cyclone(TC)intensity remains a challenge due to the complex physical processes involved in TC intensity changes.A seven-day TC intensity prediction scheme based on the logistic growth equation(LGE)for the western North Pacific(WNP)has been developed using the observed and reanalysis data.In the LGE,TC intensity change is determined by a growth term and a decay term.These two terms are comprised of four free parameters which include a time-dependent growth rate,a maximum potential intensity(MPI),and two constants.Using 33 years of training samples,optimal predictors are selected first,and then the two constants are determined based on the least square method,forcing the regressed growth rate from the optimal predictors to be as close to the observed as possible.The estimation of the growth rate is further refined based on a step-wise regression(SWR)method and a machine learning(ML)method for the period 1982−2014.Using the LGE-based scheme,a total of 80 TCs during 2015−17 are used to make independent forecasts.Results show that the root mean square errors of the LGE-based scheme are much smaller than those of the official intensity forecasts from the China Meteorological Administration(CMA),especially for TCs in the coastal regions of East Asia.Moreover,the scheme based on ML demonstrates better forecast skill than that based on SWR.The new prediction scheme offers strong potential for both improving the forecasts for rapid intensification and weakening of TCs as well as for extending the 5-day forecasts currently issued by the CMA to 7-day forecasts.
文摘In this paper, we study the Logistic type equation x= a(t)x -b(t)x^2+ e(t). Under the assumptions that e(t) is small enough and a(t), b(t) are contained in some positive intervals, we prove that this equation has a positive bounded solution which is stable. Moreover, this solution is a periodic solution if a(t), b(t) and e(t) are periodic functions, and this solution is an almost periodic solution if a(t), b(t) and e(t) are almost periodic functions.
文摘This paper studies the global attractivity of the positive equilibrium 1 of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n=0,1,2,...,(*)where {p n} is a sequence of positive real numbers, {τ(n)} is a nondecreasing sequence of integers, τ(n)<n and lim n→∞τ(n)=∞ .It is proved that ifnj=τ(n)p j≤54 for sufficiently large n and ∞j=0p j=∞,then all positive solutions of Eq.(*) tend to 1 as n→∞ .The results improve the existing results in literature.
文摘In this paper, we used two different algorithms to solve some partial differential equations, where these equations originated from the well-known two parameters of logistic distributions. The first method was the classical one that involved solving a triply of partial differential equations. The second approach was the well-known Darboux Theory. We found that the geodesic equations are a pair of isotropic curves or minimal curves. As expected, the two methods reached the same result.
文摘Growth rate of Yarrowia lipolytica NCIM 3589 was observed in a fermentation medium consisting of peptone, yeast extract, sodium chloride. Logistic equation was fitted to the growth data (time vs. biomass concentration) and compared with the prediction given by Artificial Neural Networks (ANN). ANN was found to be superior in describing growth characteristics. A single MATLAB programme is developed to fit the growth data by logistic equation and ANN.
文摘In this paper, operational matrices of Bernstein polynomials (BPs) are presented for solving the non-linear fractional Logistic differential equation (FLDE). The fractional derivative is described in the Riemann-Liouville sense. The operational matrices for the fractional integration in the Riemann-Liouville sense and the product are used to reduce FLDE to the solution of non-linear system of algebraic equations using Newton iteration method. Numerical results are introduced to satisfy the accuracy and the applicability of the proposed method.
文摘We have written a new equation to study the statistics of earthquake distributions. We call this equation “the generalized logistic equation”. The Gutenberg-Richter frequency-magnitude formula was derived from the solution of the generalized logistic equation as an asymptotic case for the approximation of large magnitudes. To illustrate how the solution of the generalized logistic equation works, it was used to approximate the observed cumulative distribution of earthquakes in four different geological provinces: the Central Atlantic (40N - 25N, 5W - 35W), Canary Islands, Magellan Mountains (20N - 9S, 148E - 170E), and the Sea of Japan. This approximation showed an excellent correlation between the theoretical curves and observed data for earthquakes of magnitudes 1 < m < 9.
文摘In the present paper, we consider the existence of positive periodic solutions for a kind of delay Logistic equations. By using a fixed point theorem in cones, we give some new existence results of single and multiple positive periodic solutions for a kind of delay Logistic equations. Some biomathematical models are presented to illustrate our results.
文摘Consider the nonautonomous delay logistic equation △yn=pnyn(1-yn-ln/k),n≥0, where {Pn}n≥0 is a sequence of nonnegative real numbers, {In}n≥0 is a sequence of positive integers satisfying n→∞lim(n-ln)=∞, and k is a positive constant. Only solutions which are positive for n ≥ 0 are considered. We obtain a new sufficient for all positive solutions of (1) to oscillate about k which contains the corresponding result in [2] when i = 1.
文摘The author studied the existence of positive solutions of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n =0,1,2,.... where { p n } is a sequence of positive real numbers, { τ(n) } is a nondecreasing sequence of integers, τ(n)<n and lim n →∞ τ(n) =∞. A sufficient condition for the existence of positive solutions of the equation was given.