Autoregressive (AR) modeling is applied to data extrapolation of radio frequency (RF) echo signals, and Burg algorithm, which can be computed in small amount and lead to a stable prediction filter, is used to estimate...Autoregressive (AR) modeling is applied to data extrapolation of radio frequency (RF) echo signals, and Burg algorithm, which can be computed in small amount and lead to a stable prediction filter, is used to estimate the prediction parameters of AR modeling. The complex data samples are directly extrapolated to obtain the extrapolated echo data in the frequency domain. The small rotating angle data extrapolation and the large rotating angular data extrapolation are considered separately in azimuth domain. The method of data extrapolation for the small rotating angle is the same as that in frequency domain, while the amplitude samples of large rotating angle echo data are extrapolated to obtain extrapolated echo amplitude, and the complex data of large rotating angle echo samples are extrapolated to get the extrapolated echo phase respectively. The calculation results show that the extrapolated echo data obtained by the above mentioned methods are accurate.展开更多
Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is d...Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.展开更多
The author’s research group has been conducting research on applications of various meteorological Grid Point Value (GPV) data offered by the Japan Meteorological Agency (JMA) to the field of wind power generation. I...The author’s research group has been conducting research on applications of various meteorological Grid Point Value (GPV) data offered by the Japan Meteorological Agency (JMA) to the field of wind power generation. In particular, the group’s research has been focusing on the following areas: 1) the use of GPV data from the JMA Meso-Scale Model (MSM-S;horizontal resolution: 5 km) and the JMA Local Forecast Model (LFM-S;horizontal resolution: 2 km), and 2) examinations of the prediction accuracy of local wind assessment with the use of these data. In both the MSM-S and the LFM-S, grid points are fixed at 10 m above the sea (ground) surface. The purpose of the present study is to establish a method in which the values of the MSM-S and LFM-S wind speed data from the 10 m height are used as the reference wind speed and are, using a power law, vertically extrapolated to 80 to 90 m heights, typical hub-heights of offshore wind turbines. For this purpose, the present study examined time-averaged vertical profiles of wind speed over the ocean based on the MSM-S data and in-situ data in the Hibikinada area, Kitakyushu City, Fukuoka Prefecture, Japan. As a result, it was revealed that a strong wind shear existed close to the sea surface, between the 10 and 30 m heights. In order to address the above-mentioned wind shear, a two-step vertical extrapolation method was proposed in the present study. In this method, two values of N, specifically for low and high altitudes (below and above approximately 30 m, respectively), were calculated and used. The data were created for the five years between 2012 and 2016. Similarly to previous analyses, the analysis of the created data set indicated that the potential of offshore wind power generation in the Hibikinada area, Kitakyushu City is quite high.展开更多
As a key step in next-generation risk assessment(NGRA),in vitro to in vivo extrapolation(IVIVE)aims to mobilize a mechanism-based understanding of toxicology to translate bioactive chemical concentrations obtained fro...As a key step in next-generation risk assessment(NGRA),in vitro to in vivo extrapolation(IVIVE)aims to mobilize a mechanism-based understanding of toxicology to translate bioactive chemical concentrations obtained from in vitro assays to corresponding exposures likely to induce bioactivity in vivo.This conversion can be achieved via physiologically-based toxicokinetic(PBTK)models and machine learning(ML)algorithms.The last 5 years have witnessed a period of rapid development in IVIVE,with the number of IVIVE-related publications increasing annually.This Review aims to(1)provide a comprehensive overview of the origin of IVIVE and initiatives undertaken by multiple national agencies to promote its development;(2)compile and sort out IVIVE-related publications and perform a clustering analysis of their high-frequency keywords to capture key research hotspots;(3)comprehensively review PBTK and ML model-based IVIVE studies published in the last 5 years to understand the research directions and methodology developments;and(4)propose future perspectives for IVIVE from two aspects:expanding the scope of application and integrating new technologies.The former includes focusing on metabolite toxicity,conducting IVIVE studies on susceptible populations,advancing ML-based quantitative IVIVE models,and extending research to ecological effects.The latter includes combining systems biology,multiomics,and adverse outcome networks with IVIVE,aiming at a more microscopic,mechanistic,and comprehensive toxicity prediction.This Review highlights the important value of IVIVE in NGRA,with the goal of providing confidence for its routine use in chemical prioritization,hazard assessment,and regulatory decision making.展开更多
To completely eliminate the time delays caused by phasor data compressions for real-time synchrophasor applications,a real-time synchrophasor data compression(RSDC)is proposed in this paper.The two-way rotation charac...To completely eliminate the time delays caused by phasor data compressions for real-time synchrophasor applications,a real-time synchrophasor data compression(RSDC)is proposed in this paper.The two-way rotation characteristic and elliptical trajectory of dynamic synchrophasors are introduced first to enhance the compressions along with a fast solving method for elliptical trajectory fitting equations.The RSDC for phasor data compression and reconstruction is then proposed by combining the interpolation and extrapolation compressions.The proposed RSDC is verified by both the actual phasor measurement data recorded in a two-phase short-circuit incident and a subsynchronous oscillation incident,and the synthetic dynamic synchrophasors.It is also compared with two previous real-time phasor data compression techniques,i.e.,phasor swing door trending(PSDT)and exception and swing door trending(SDT)data compression(ESDC).The verification results demonstrate that RSDC can achieve significantly higher compression ratios for offline applications with the interpolation and the zero-delay phasor data compression with the extrapolation for real-time applications simultaneously.展开更多
Imaging sea-bed sediment layers from echo data, which are collected by a system composed of a seismic profiler and a hydrophone streamer towed behind the profiler, is a way to reconstruct the structure of sedimeat lay...Imaging sea-bed sediment layers from echo data, which are collected by a system composed of a seismic profiler and a hydrophone streamer towed behind the profiler, is a way to reconstruct the structure of sedimeat layers with acoustic wav equation. The equation which describes the wave propagation is used for backward extrapolation of echo data observed at sea surface. When the medium is homogeneous or horizontally layered, time imaging approach is valid. However, in the case where a considerable lateral variation in velocity exists, the image section processed with the time approach does not represent the real structure, because of distortions caused by thin-lens effect similar as in optics. In this case, depth imaging approach must be used for both the time-shift correction of refraction terms and the convergence of diffractions simultaneously as wavefields are downward continued. As a result, the good image can be derived to determine the structure of sea-bed sediment layers.展开更多
文摘Autoregressive (AR) modeling is applied to data extrapolation of radio frequency (RF) echo signals, and Burg algorithm, which can be computed in small amount and lead to a stable prediction filter, is used to estimate the prediction parameters of AR modeling. The complex data samples are directly extrapolated to obtain the extrapolated echo data in the frequency domain. The small rotating angle data extrapolation and the large rotating angular data extrapolation are considered separately in azimuth domain. The method of data extrapolation for the small rotating angle is the same as that in frequency domain, while the amplitude samples of large rotating angle echo data are extrapolated to obtain extrapolated echo amplitude, and the complex data of large rotating angle echo samples are extrapolated to get the extrapolated echo phase respectively. The calculation results show that the extrapolated echo data obtained by the above mentioned methods are accurate.
基金supported by the National Scientific and Technological Plan(Nos.2009BAB43B00 and 2009BAB43B01)
文摘Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.
文摘The author’s research group has been conducting research on applications of various meteorological Grid Point Value (GPV) data offered by the Japan Meteorological Agency (JMA) to the field of wind power generation. In particular, the group’s research has been focusing on the following areas: 1) the use of GPV data from the JMA Meso-Scale Model (MSM-S;horizontal resolution: 5 km) and the JMA Local Forecast Model (LFM-S;horizontal resolution: 2 km), and 2) examinations of the prediction accuracy of local wind assessment with the use of these data. In both the MSM-S and the LFM-S, grid points are fixed at 10 m above the sea (ground) surface. The purpose of the present study is to establish a method in which the values of the MSM-S and LFM-S wind speed data from the 10 m height are used as the reference wind speed and are, using a power law, vertically extrapolated to 80 to 90 m heights, typical hub-heights of offshore wind turbines. For this purpose, the present study examined time-averaged vertical profiles of wind speed over the ocean based on the MSM-S data and in-situ data in the Hibikinada area, Kitakyushu City, Fukuoka Prefecture, Japan. As a result, it was revealed that a strong wind shear existed close to the sea surface, between the 10 and 30 m heights. In order to address the above-mentioned wind shear, a two-step vertical extrapolation method was proposed in the present study. In this method, two values of N, specifically for low and high altitudes (below and above approximately 30 m, respectively), were calculated and used. The data were created for the five years between 2012 and 2016. Similarly to previous analyses, the analysis of the created data set indicated that the potential of offshore wind power generation in the Hibikinada area, Kitakyushu City is quite high.
基金National Natural Science Foundation of China(grant no.2217060631)National Key Research and Development Program of China(grant no.2022YFC3902104).
文摘As a key step in next-generation risk assessment(NGRA),in vitro to in vivo extrapolation(IVIVE)aims to mobilize a mechanism-based understanding of toxicology to translate bioactive chemical concentrations obtained from in vitro assays to corresponding exposures likely to induce bioactivity in vivo.This conversion can be achieved via physiologically-based toxicokinetic(PBTK)models and machine learning(ML)algorithms.The last 5 years have witnessed a period of rapid development in IVIVE,with the number of IVIVE-related publications increasing annually.This Review aims to(1)provide a comprehensive overview of the origin of IVIVE and initiatives undertaken by multiple national agencies to promote its development;(2)compile and sort out IVIVE-related publications and perform a clustering analysis of their high-frequency keywords to capture key research hotspots;(3)comprehensively review PBTK and ML model-based IVIVE studies published in the last 5 years to understand the research directions and methodology developments;and(4)propose future perspectives for IVIVE from two aspects:expanding the scope of application and integrating new technologies.The former includes focusing on metabolite toxicity,conducting IVIVE studies on susceptible populations,advancing ML-based quantitative IVIVE models,and extending research to ecological effects.The latter includes combining systems biology,multiomics,and adverse outcome networks with IVIVE,aiming at a more microscopic,mechanistic,and comprehensive toxicity prediction.This Review highlights the important value of IVIVE in NGRA,with the goal of providing confidence for its routine use in chemical prioritization,hazard assessment,and regulatory decision making.
基金supported by Fundamental Research Funds for the Central Universities(No.2019RC006)National Natural Science Foundation of China(No.52077004)。
文摘To completely eliminate the time delays caused by phasor data compressions for real-time synchrophasor applications,a real-time synchrophasor data compression(RSDC)is proposed in this paper.The two-way rotation characteristic and elliptical trajectory of dynamic synchrophasors are introduced first to enhance the compressions along with a fast solving method for elliptical trajectory fitting equations.The RSDC for phasor data compression and reconstruction is then proposed by combining the interpolation and extrapolation compressions.The proposed RSDC is verified by both the actual phasor measurement data recorded in a two-phase short-circuit incident and a subsynchronous oscillation incident,and the synthetic dynamic synchrophasors.It is also compared with two previous real-time phasor data compression techniques,i.e.,phasor swing door trending(PSDT)and exception and swing door trending(SDT)data compression(ESDC).The verification results demonstrate that RSDC can achieve significantly higher compression ratios for offline applications with the interpolation and the zero-delay phasor data compression with the extrapolation for real-time applications simultaneously.
文摘Imaging sea-bed sediment layers from echo data, which are collected by a system composed of a seismic profiler and a hydrophone streamer towed behind the profiler, is a way to reconstruct the structure of sedimeat layers with acoustic wav equation. The equation which describes the wave propagation is used for backward extrapolation of echo data observed at sea surface. When the medium is homogeneous or horizontally layered, time imaging approach is valid. However, in the case where a considerable lateral variation in velocity exists, the image section processed with the time approach does not represent the real structure, because of distortions caused by thin-lens effect similar as in optics. In this case, depth imaging approach must be used for both the time-shift correction of refraction terms and the convergence of diffractions simultaneously as wavefields are downward continued. As a result, the good image can be derived to determine the structure of sea-bed sediment layers.