For large-scale networked plant-wide systems composed by physically(or geographically) divided subsystems, only limited information is available for local controllers on account of region and communication restriction...For large-scale networked plant-wide systems composed by physically(or geographically) divided subsystems, only limited information is available for local controllers on account of region and communication restrictions. Concerning the optimal control problem of such subsystems, a neighbor-based distributed model predictive control(NDMPC) strategy is presented to improve the global system performance. In this scheme, the performance index of local subsystems and that of its neighbors are minimized together in the determination of the optimal control input, which makes the local control decision also beneficial to its neighboring subsystems and further contributes to improving the convergence and control performance of overall system.The stability of the closed-loop system is proved. Moreover, the parameter designing method for distributed synthesis is provided.Finally, the simulation results illustrate the main characteristics and effectiveness of the proposed control scheme.展开更多
A generalized multi-layered granulation structure used by neighborhood systems is proposed. With granulated views, the concepts of approximations under incomplete information systems are studied, which are represented...A generalized multi-layered granulation structure used by neighborhood systems is proposed. With granulated views, the concepts of approximations under incomplete information systems are studied, which are represented by covering of the universe. With respect to different levels of granulations, a pair of lower and upper approximations is defined and an approximation structure is investigated, which lead to a more general approximation structure. The generalized multi-layered granulation structure provides a basis of the proposed framework of granular computing. Using this framework, the interesting and useful results about information granulation and approximation reasoning can be obtained. This paper presents some useful explorations about the incomplete information systems from information views.展开更多
Granular Computing on partitions(RST),coverings(GrCC) and neighborhood systems(LNS) are examined: (1) The order of generality is RST, GrCC, and then LNS. (2) The quotient structure: In RST, it is called quotient set. ...Granular Computing on partitions(RST),coverings(GrCC) and neighborhood systems(LNS) are examined: (1) The order of generality is RST, GrCC, and then LNS. (2) The quotient structure: In RST, it is called quotient set. In GrCC, it is a simplical complex, called the nerve of the covering in combinatorial topology. For LNS, the structure has no known description. (3) The approximation space of RST is a topological space generated by a partition, called a clopen space. For LNS, it is a generalized/pretopological space which is more general than topological space. For GrCC,there are two possibilities. One is a special case of LNS,which is the topological space generated by the covering. There is another topological space, the topology generated by the finite intersections of the members of a covering The first one treats covering as a base, the second one as a subbase. (4) Knowledge representations in RST are symbol-valued systems. In GrCC, they are expression-valued systems. In LNS, they are multivalued system; reported in 1998 . (5) RST and GRCC representation theories are complete in the sense that granular models can be recaptured fully from the knowledge representations.展开更多
This paper considers the human-in-the-loop leader-following consensus control problem of multi-agent systems(MASs)with unknown matched nonlinear functions and actuator faults.It is assumed that a human operator contro...This paper considers the human-in-the-loop leader-following consensus control problem of multi-agent systems(MASs)with unknown matched nonlinear functions and actuator faults.It is assumed that a human operator controls the MASs via sending the command signal to a non-autonomous leader which generates the desired trajectory.Moreover,the leader’s input is nonzero and not available to all followers.By using neural networks and fault estimators to approximate unknown nonlinear dynamics and identify the actuator faults,respectively,the neighborhood observer-based neural fault-tolerant controller with dynamic coupling gains is designed.It is proved that the state of each follower can synchronize with the leader’s state under a directed graph and all signals in the closed-loop system are guaranteed to be cooperatively uniformly ultimately bounded.Finally,simulation results are presented for verifying the effectiveness of the proposed control method.展开更多
Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as dev...Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as developing a real one requires lots of manpower and resources. BMDS is a typical complex system for its nonlinear, adaptive and uncertainty characteristics. The agent-based modeling method is well suited for the complex system whose overall behaviors are determined by interactions among individual elements. A multi-agent decision support system (DSS), which includes missile agent, radar agent and command center agent, is established based on the studies of structure and function of BMDS. Considering the constraints brought by radar, intercept missile, offensive missile and commander, the objective function of DSS is established. In order to dynamically generate the optimal interception plan, the variable neighborhood negative selection particle swarm optimization (VNNSPSO) algorithm is proposed to support the decision making of DSS. The proposed algorithm is compared with the standard PSO, constriction factor PSO (CFPSO), inertia weight linear decrease PSO (LDPSO), variable neighborhood PSO (VNPSO) algorithm from the aspects of convergence rate, iteration number, average fitness value and standard deviation. The simulation results verify the efficiency of the proposed algorithm. The multi-agent DSS is developed through the Repast simulation platform and the constructed DSS can generate intercept plans automatically and support three-dimensional dynamic display of missile defense process.展开更多
基金supported by the National Nature Science Foundation of China (61590924,61673273,61833012)
文摘For large-scale networked plant-wide systems composed by physically(or geographically) divided subsystems, only limited information is available for local controllers on account of region and communication restrictions. Concerning the optimal control problem of such subsystems, a neighbor-based distributed model predictive control(NDMPC) strategy is presented to improve the global system performance. In this scheme, the performance index of local subsystems and that of its neighbors are minimized together in the determination of the optimal control input, which makes the local control decision also beneficial to its neighboring subsystems and further contributes to improving the convergence and control performance of overall system.The stability of the closed-loop system is proved. Moreover, the parameter designing method for distributed synthesis is provided.Finally, the simulation results illustrate the main characteristics and effectiveness of the proposed control scheme.
文摘A generalized multi-layered granulation structure used by neighborhood systems is proposed. With granulated views, the concepts of approximations under incomplete information systems are studied, which are represented by covering of the universe. With respect to different levels of granulations, a pair of lower and upper approximations is defined and an approximation structure is investigated, which lead to a more general approximation structure. The generalized multi-layered granulation structure provides a basis of the proposed framework of granular computing. Using this framework, the interesting and useful results about information granulation and approximation reasoning can be obtained. This paper presents some useful explorations about the incomplete information systems from information views.
文摘Granular Computing on partitions(RST),coverings(GrCC) and neighborhood systems(LNS) are examined: (1) The order of generality is RST, GrCC, and then LNS. (2) The quotient structure: In RST, it is called quotient set. In GrCC, it is a simplical complex, called the nerve of the covering in combinatorial topology. For LNS, the structure has no known description. (3) The approximation space of RST is a topological space generated by a partition, called a clopen space. For LNS, it is a generalized/pretopological space which is more general than topological space. For GrCC,there are two possibilities. One is a special case of LNS,which is the topological space generated by the covering. There is another topological space, the topology generated by the finite intersections of the members of a covering The first one treats covering as a base, the second one as a subbase. (4) Knowledge representations in RST are symbol-valued systems. In GrCC, they are expression-valued systems. In LNS, they are multivalued system; reported in 1998 . (5) RST and GRCC representation theories are complete in the sense that granular models can be recaptured fully from the knowledge representations.
基金This work was partially supported by the National Natural Science Foundation of China(62033003,62003098)the Local Innovative and Research Teams Project of Guangdong Special Support Program(2019BT02X353)the China Postdoctoral Science Foundation(2019M662813,2020T130124).
文摘This paper considers the human-in-the-loop leader-following consensus control problem of multi-agent systems(MASs)with unknown matched nonlinear functions and actuator faults.It is assumed that a human operator controls the MASs via sending the command signal to a non-autonomous leader which generates the desired trajectory.Moreover,the leader’s input is nonzero and not available to all followers.By using neural networks and fault estimators to approximate unknown nonlinear dynamics and identify the actuator faults,respectively,the neighborhood observer-based neural fault-tolerant controller with dynamic coupling gains is designed.It is proved that the state of each follower can synchronize with the leader’s state under a directed graph and all signals in the closed-loop system are guaranteed to be cooperatively uniformly ultimately bounded.Finally,simulation results are presented for verifying the effectiveness of the proposed control method.
文摘Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as developing a real one requires lots of manpower and resources. BMDS is a typical complex system for its nonlinear, adaptive and uncertainty characteristics. The agent-based modeling method is well suited for the complex system whose overall behaviors are determined by interactions among individual elements. A multi-agent decision support system (DSS), which includes missile agent, radar agent and command center agent, is established based on the studies of structure and function of BMDS. Considering the constraints brought by radar, intercept missile, offensive missile and commander, the objective function of DSS is established. In order to dynamically generate the optimal interception plan, the variable neighborhood negative selection particle swarm optimization (VNNSPSO) algorithm is proposed to support the decision making of DSS. The proposed algorithm is compared with the standard PSO, constriction factor PSO (CFPSO), inertia weight linear decrease PSO (LDPSO), variable neighborhood PSO (VNPSO) algorithm from the aspects of convergence rate, iteration number, average fitness value and standard deviation. The simulation results verify the efficiency of the proposed algorithm. The multi-agent DSS is developed through the Repast simulation platform and the constructed DSS can generate intercept plans automatically and support three-dimensional dynamic display of missile defense process.
基金Supported by National Natural Science Foundation of China (61273260), Specialized Research Fund for the Doctoral Program of Higher Education of China (20121333120010), Natural Scientific Research Foundation of the Higher Education Institutions of Hebei Province (2010t65), the Major Program of the National Natural Science Foundation of China (61290322), Foundation of Key Labora- tory of System Control and Information Processing, Ministry of Education (SCIP2012008), and Science and Technology Research and Development Plan of Qinhuangdao City (2012021A041)