As it is almost impossible to carry out the prototype hydro-turbine experiment be- fore the power plant is built up, rational prediction of pressure fluctuations in the prototype turbine is very important at the desig...As it is almost impossible to carry out the prototype hydro-turbine experiment be- fore the power plant is built up, rational prediction of pressure fluctuations in the prototype turbine is very important at the design stage. From this viewpoint, we at first treated the unsteady turbulent flow computation based on the modified RNG k-ε turbulence model through the whole flow passage to simulate the pressure fluctuation in a model turbine. Since fair agreement was recognized between the numerical results and the experimental data, this numerical method was applied to simulate the pressure fluctuations in the prototype turbine. From the comparison of them with the model turbine results, it is seen that their qualitative trend of pres- sure fluctuations are similar, but an appreciable difference is observed between the amplitudes of pressure fluctuation of the prototype turbine and that of the model turbine. Though the present findings may be explained by the effect of Reynolds number, further studies are expected for quantitative interpretation. We paid atten- tion to the interaction between the fluid and turbine structure. Adopting a weak fluid-solid coupling method, we studied the pressure fluctuation in the prototype turbine to clarify how the elastic behavior of runner blades influenced the charac- teristics of pressure fluctuation.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.90410019)
文摘As it is almost impossible to carry out the prototype hydro-turbine experiment be- fore the power plant is built up, rational prediction of pressure fluctuations in the prototype turbine is very important at the design stage. From this viewpoint, we at first treated the unsteady turbulent flow computation based on the modified RNG k-ε turbulence model through the whole flow passage to simulate the pressure fluctuation in a model turbine. Since fair agreement was recognized between the numerical results and the experimental data, this numerical method was applied to simulate the pressure fluctuations in the prototype turbine. From the comparison of them with the model turbine results, it is seen that their qualitative trend of pres- sure fluctuations are similar, but an appreciable difference is observed between the amplitudes of pressure fluctuation of the prototype turbine and that of the model turbine. Though the present findings may be explained by the effect of Reynolds number, further studies are expected for quantitative interpretation. We paid atten- tion to the interaction between the fluid and turbine structure. Adopting a weak fluid-solid coupling method, we studied the pressure fluctuation in the prototype turbine to clarify how the elastic behavior of runner blades influenced the charac- teristics of pressure fluctuation.