Based on a large number of geological and geophysical data,the formation,fracture-caves types and hydrocarbon distribution of hoodoo-upland on the Ordovician karst slope in the Tahe area,Tarim Basin,are discussed by a...Based on a large number of geological and geophysical data,the formation,fracture-caves types and hydrocarbon distribution of hoodoo-upland on the Ordovician karst slope in the Tahe area,Tarim Basin,are discussed by analyzing faults and strata thickness.The hoodoo-upland was made of high peaks and narrow valleys in the Ordovician karst slope during the Early Hercynian karst period,which were distributed along the NNE positive flower structure and had inherited evolution.The fault-fractures and fracture-vugs complex were extremely developed,with a thickness of 100 m.The cumulative oil production of 60% oil wells was more than 20×10^(4) t per well in the hoodoo-upland,where the residual thickness of the Ordovician Yingshan Formation was greater than karst depressions.Caves formed by the shelter of collapsed breccias were developed in the valleys.They were 1.6 to 13.5 m high,with a filling rate of 51.6%.The positive flower structure under the settings of strike-slip compression controlled the early formation of the hoodoo-upland on the karst slope,resulting in the differences of drainage distribution and karstification.Compared with the water-rich karst valley,the hoodoo-upland with lean water suffered weaker karstification,had thicker residual stratum,and was higher in terrain.In rainy season,the meteoric water flew and corrode along the cracks,forming a complex network of fractures and caves.Combined with inherited uplift and the effective match of the NNE deep faults,oil and gas continuously charged into the reservoir space in the upland,forming the hoodoo fracture-cave reservoir with vertically quasi continuous distribution,high hydrocarbon abundance and high production.展开更多
Sugarcane production is mainly slope cultivation, so soil erosion was serious. The results showed that the different coverage methods have a higher production rate of 39.26%-41.22%, than the control treatment (blank...Sugarcane production is mainly slope cultivation, so soil erosion was serious. The results showed that the different coverage methods have a higher production rate of 39.26%-41.22%, than the control treatment (blank) without covering, so yield-increasing effect was significant. As annual rainfall is around 1,250 mm and the control treatment(blank) without covering, the whole year of fertilizer runoff was 175 mm, the average soil content of runoff water was 2.22 g/L, and the total amount of soil loss was 3585.0 kg/ha. The treatment with farmer fertilization practice + plastic film mulching annual runoff water was 153 mm, the average soil content of runoff water was 2.30 g/L, and the total soil loss of volume was 3183.0 kg/ha. The treatment with optimize fertilization + plastic film mulching annual runoff water was 141mm, the average soil content of runoff water was 2.42 g/L, and the total amount of soil loss was 2958.0 kg/ha. Sugarcane leaves covered treatment runoff did not occur throughout the year. The coverage of treatment compared with the control treatment, runoff water reduction is in the range of 12.6-16.0%, is 15.8-23.8% reduction in the amount of runoff soil. Treatment with no fertilization nutrient N loss was 5.760 kg/ha, and P205 loss was 2.565 kg/ha in runoff water. Farmer fertilization treatments the nutrient N loss was 12.435 kg/ha, and the loss P205 was mulching treatment nutrient N loss was 7.755 kg/ha, and P205 loss was 3.960 kg/ha in water runoff. Optimizing fertilization + plastic 3.540 kg/ha in runoff water.展开更多
[目的]为准确评价喀斯特槽谷区顺/逆层坡侵蚀坡面的土壤质量特征,筛选出适用于该地区的土壤质量评价方法,探析限制其土壤质量的障碍因子。[方法]以重庆市青木关喀斯特槽谷区顺/逆层坡面的5种典型土地利用类型(林地、草地、裸地、玉米地...[目的]为准确评价喀斯特槽谷区顺/逆层坡侵蚀坡面的土壤质量特征,筛选出适用于该地区的土壤质量评价方法,探析限制其土壤质量的障碍因子。[方法]以重庆市青木关喀斯特槽谷区顺/逆层坡面的5种典型土地利用类型(林地、草地、裸地、玉米地、辣椒地)为研究对象,利用主成分分析法结合Norm值建立评价指标最小数据集(minimum data set,MDS),并通过非线性土壤质量评价方法和隶属度函数对喀斯特槽谷区顺/逆层坡面的土壤质量进行评价。[结果](1)喀斯特槽谷区土壤质量评价指标最小数据集(MDS)包括毛管持水量、毛管孔隙度和全磷;(2)通过非线性土壤质量评价方法得出,逆层坡土壤质量(0.519)优于顺层坡(0.451),其中逆层坡林地土壤质量最优(0.653),辣椒地土壤质量最差(0.426);(3)非线性评价方法在顺/逆层坡的决定系数(R 2)均高于隶属度函数,因此喀斯特槽谷区更适合采用非线性评分模型;(4)顺/逆层坡侵蚀坡面的土壤质量障碍因子差异显著,仅有全氮为共同的障碍因子。[结论]适当增加草地和乔木林的覆盖能提高喀斯特槽谷区土壤质量,研究结果可因地制宜地为喀斯特槽谷区顺/逆层坡侵蚀坡面的土壤质量调控和生态恢复提供依据。展开更多
基金Supported by the National Natural Science Foundation of China(U1663204)National Major Oil and Gas Project(2016ZX05014002-007)。
文摘Based on a large number of geological and geophysical data,the formation,fracture-caves types and hydrocarbon distribution of hoodoo-upland on the Ordovician karst slope in the Tahe area,Tarim Basin,are discussed by analyzing faults and strata thickness.The hoodoo-upland was made of high peaks and narrow valleys in the Ordovician karst slope during the Early Hercynian karst period,which were distributed along the NNE positive flower structure and had inherited evolution.The fault-fractures and fracture-vugs complex were extremely developed,with a thickness of 100 m.The cumulative oil production of 60% oil wells was more than 20×10^(4) t per well in the hoodoo-upland,where the residual thickness of the Ordovician Yingshan Formation was greater than karst depressions.Caves formed by the shelter of collapsed breccias were developed in the valleys.They were 1.6 to 13.5 m high,with a filling rate of 51.6%.The positive flower structure under the settings of strike-slip compression controlled the early formation of the hoodoo-upland on the karst slope,resulting in the differences of drainage distribution and karstification.Compared with the water-rich karst valley,the hoodoo-upland with lean water suffered weaker karstification,had thicker residual stratum,and was higher in terrain.In rainy season,the meteoric water flew and corrode along the cracks,forming a complex network of fractures and caves.Combined with inherited uplift and the effective match of the NNE deep faults,oil and gas continuously charged into the reservoir space in the upland,forming the hoodoo fracture-cave reservoir with vertically quasi continuous distribution,high hydrocarbon abundance and high production.
文摘Sugarcane production is mainly slope cultivation, so soil erosion was serious. The results showed that the different coverage methods have a higher production rate of 39.26%-41.22%, than the control treatment (blank) without covering, so yield-increasing effect was significant. As annual rainfall is around 1,250 mm and the control treatment(blank) without covering, the whole year of fertilizer runoff was 175 mm, the average soil content of runoff water was 2.22 g/L, and the total amount of soil loss was 3585.0 kg/ha. The treatment with farmer fertilization practice + plastic film mulching annual runoff water was 153 mm, the average soil content of runoff water was 2.30 g/L, and the total soil loss of volume was 3183.0 kg/ha. The treatment with optimize fertilization + plastic film mulching annual runoff water was 141mm, the average soil content of runoff water was 2.42 g/L, and the total amount of soil loss was 2958.0 kg/ha. Sugarcane leaves covered treatment runoff did not occur throughout the year. The coverage of treatment compared with the control treatment, runoff water reduction is in the range of 12.6-16.0%, is 15.8-23.8% reduction in the amount of runoff soil. Treatment with no fertilization nutrient N loss was 5.760 kg/ha, and P205 loss was 2.565 kg/ha in runoff water. Farmer fertilization treatments the nutrient N loss was 12.435 kg/ha, and the loss P205 was mulching treatment nutrient N loss was 7.755 kg/ha, and P205 loss was 3.960 kg/ha in water runoff. Optimizing fertilization + plastic 3.540 kg/ha in runoff water.
文摘[目的]为准确评价喀斯特槽谷区顺/逆层坡侵蚀坡面的土壤质量特征,筛选出适用于该地区的土壤质量评价方法,探析限制其土壤质量的障碍因子。[方法]以重庆市青木关喀斯特槽谷区顺/逆层坡面的5种典型土地利用类型(林地、草地、裸地、玉米地、辣椒地)为研究对象,利用主成分分析法结合Norm值建立评价指标最小数据集(minimum data set,MDS),并通过非线性土壤质量评价方法和隶属度函数对喀斯特槽谷区顺/逆层坡面的土壤质量进行评价。[结果](1)喀斯特槽谷区土壤质量评价指标最小数据集(MDS)包括毛管持水量、毛管孔隙度和全磷;(2)通过非线性土壤质量评价方法得出,逆层坡土壤质量(0.519)优于顺层坡(0.451),其中逆层坡林地土壤质量最优(0.653),辣椒地土壤质量最差(0.426);(3)非线性评价方法在顺/逆层坡的决定系数(R 2)均高于隶属度函数,因此喀斯特槽谷区更适合采用非线性评分模型;(4)顺/逆层坡侵蚀坡面的土壤质量障碍因子差异显著,仅有全氮为共同的障碍因子。[结论]适当增加草地和乔木林的覆盖能提高喀斯特槽谷区土壤质量,研究结果可因地制宜地为喀斯特槽谷区顺/逆层坡侵蚀坡面的土壤质量调控和生态恢复提供依据。