In this study,different molecular weight(MW)carboxymethyl chitosans(CM-chitosan)nanoparticles were prepared by ionic gelification.The particle size of nanoparticles was around 180–250 nm by dynamic light scattering(D...In this study,different molecular weight(MW)carboxymethyl chitosans(CM-chitosan)nanoparticles were prepared by ionic gelification.The particle size of nanoparticles was around 180–250 nm by dynamic light scattering(DLS)and transmission electron microscope(TEM).With the increase of CM-chitosan nanoparticles concentration from 2 to 200μg/mL,the growth inhibition effects on the keloid fibroblast increased.At the concentration of 100μg/mL,CM-chitosan nanoparticles withMW6.3 kDa had a significant inhibitory effect(inhibition ratio 48.79%)of the proliferation of keloid fibroblast.Compared with CM-chitosan solution,the inhibition of CM-chitosan nanoparticles were lower in prior period and similar in later period.By analyzing the different effects of chitosan,CM-chitosan solution and CM-chitosan nanoparticles on proliferation of keloid fibroblast,we have found that the carboxylmethyl groups of CM-chitosan play an important role in inhibition of proliferation of keloid fibroblast.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.81071274).
文摘In this study,different molecular weight(MW)carboxymethyl chitosans(CM-chitosan)nanoparticles were prepared by ionic gelification.The particle size of nanoparticles was around 180–250 nm by dynamic light scattering(DLS)and transmission electron microscope(TEM).With the increase of CM-chitosan nanoparticles concentration from 2 to 200μg/mL,the growth inhibition effects on the keloid fibroblast increased.At the concentration of 100μg/mL,CM-chitosan nanoparticles withMW6.3 kDa had a significant inhibitory effect(inhibition ratio 48.79%)of the proliferation of keloid fibroblast.Compared with CM-chitosan solution,the inhibition of CM-chitosan nanoparticles were lower in prior period and similar in later period.By analyzing the different effects of chitosan,CM-chitosan solution and CM-chitosan nanoparticles on proliferation of keloid fibroblast,we have found that the carboxylmethyl groups of CM-chitosan play an important role in inhibition of proliferation of keloid fibroblast.