[Objective] The paper was to provide new germplasm sources for efficient and economical degradation and utilization of animal keratin.[Method] The keratin-degrading fungus was isolated,screened and primarily identifie...[Objective] The paper was to provide new germplasm sources for efficient and economical degradation and utilization of animal keratin.[Method] The keratin-degrading fungus was isolated,screened and primarily identified by using the combination method of traditional isolation and screening,solid culture-medium degradation and animal test.[Result] A strain of non-pathogenic filamentous fungi with high degradation efficiency was obtained,which was preliminarily identified to be a species in Mucoraceae.[Conclusion] The discovery of the strain enriched the family members of keratin-degrading fungus,and provided new germplasm resources for degradation and utilization of animal keratin.展开更多
After selective extraction and purification, plant keratin intermediate filaments were reassembled in vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidi...After selective extraction and purification, plant keratin intermediate filaments were reassembled in vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filaments in vitro. In higher magnification images , it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24-25 nm periodic structural repeat alone the axis of both the 10 nm filaments and protofilaments. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments.展开更多
基金Supported by Technology Major Projects for Cultivation of New Varieties of National Genetically Modified Organism(2008ZX08005-002)~~
文摘[Objective] The paper was to provide new germplasm sources for efficient and economical degradation and utilization of animal keratin.[Method] The keratin-degrading fungus was isolated,screened and primarily identified by using the combination method of traditional isolation and screening,solid culture-medium degradation and animal test.[Result] A strain of non-pathogenic filamentous fungi with high degradation efficiency was obtained,which was preliminarily identified to be a species in Mucoraceae.[Conclusion] The discovery of the strain enriched the family members of keratin-degrading fungus,and provided new germplasm resources for degradation and utilization of animal keratin.
基金Project supported by the National Natural Science Foundation of China (Grant No. 39370352)the Doctor Foundation of Ministry of Education of China.
文摘After selective extraction and purification, plant keratin intermediate filaments were reassembled in vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filaments in vitro. In higher magnification images , it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24-25 nm periodic structural repeat alone the axis of both the 10 nm filaments and protofilaments. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments.