期刊文献+
共找到312篇文章
< 1 2 16 >
每页显示 20 50 100
基于IHHO-HKELM输电线路覆冰预测模型
1
作者 黄力 宋爽 +4 位作者 刘闯 王骏骏 胡丹 何其新 鲁偎依 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期33-41,共9页
为了进一步提高输电线路覆冰预测精度,提出一种基于改进哈里斯鹰算法(improved harris hawk optimiza-tion,IHHO)优化混合核极限学习机(hybrid kernel extreme learning machine,HKELM)的输电线路覆冰预测模型。在核极限学习机(KELM)中... 为了进一步提高输电线路覆冰预测精度,提出一种基于改进哈里斯鹰算法(improved harris hawk optimiza-tion,IHHO)优化混合核极限学习机(hybrid kernel extreme learning machine,HKELM)的输电线路覆冰预测模型。在核极限学习机(KELM)中引入混合核函数,形成HKELM,利用黄金正弦、非线性递减能量指数和高斯随机游走等策略对IHHO算法进行改进;以IHHO算法的优化性能采用其对HKELM的权值向量和核参数进行优化,建立基于IHHO-HKELM的输电线路覆冰预测模型,并通过计算气象因素与覆冰厚度之间的灰色关联度确定覆冰预测模型的输入量。算例分析结果表明,IHHO-HKELM模型预测结果的均方误差、最大误差和平均相对误差分别为0.285、0.860 mm和2.83%,预测效果好于其他模型,将本文覆冰预测模型应用于其他覆冰线路,可获得良好的应用效果并验证模型的优越性和实用性。 展开更多
关键词 输电线路 覆冰预测 核极限学习机 混合核函数 改进哈里斯鹰算法
下载PDF
基于核函数的隔离森林算法
2
作者 董东 郝琳琳 《软件导刊》 2024年第11期125-128,共4页
基于随机子采样的隔离森林算法没有考虑到子采样中来自不同区域样本点之间的相对密度,为此提出基于核函数的隔离森林算法K-iForest,根据概率密度函数重新采样来提高隔离森林算法的性能。在离群点检测数据库(ODDS)的Annthyroid、ForestCo... 基于随机子采样的隔离森林算法没有考虑到子采样中来自不同区域样本点之间的相对密度,为此提出基于核函数的隔离森林算法K-iForest,根据概率密度函数重新采样来提高隔离森林算法的性能。在离群点检测数据库(ODDS)的Annthyroid、ForestCover、Mulcross、Shuttle和Http(KDD Cup 1999)、Smtp(KDD Cup 1999)、KDD CUP 99数据集上验证K-iForest算法的有效性和效率,并与iForest算法、EIF算法、RRCF算法、GIF算法以及HIF算法进行比较。实验结果表明,K-iForest算法的AUC值高出其他算法0.1%~100.2%。 展开更多
关键词 核函数 离群点检测 隔离森林算法 概率密度 相对密度
下载PDF
众数自适应Lasso回归的统计推断
3
作者 叶五一 许寅聪 焦守坤 《应用概率统计》 CSCD 北大核心 2024年第1期107-121,共15页
本文给出了自适应Lasso的众数回归模型,用来对众数回归模型的变量进行选择.对比传统的均值回归模型和中位数回归模型,众数回归在解决重尾、多峰分布问题时更加稳健.众数回归模型的主要估计方法是核估计方法,当自变量的数目较大时,该方... 本文给出了自适应Lasso的众数回归模型,用来对众数回归模型的变量进行选择.对比传统的均值回归模型和中位数回归模型,众数回归在解决重尾、多峰分布问题时更加稳健.众数回归模型的主要估计方法是核估计方法,当自变量的数目较大时,该方法会产生难以忽略的计算误差.本文在核估计方法的众数回归模型基础上添加惩罚项,并通过自适应Lasso方法进行参数估计,有效的剔除了贡献率低的自变量,同时提高了计算的准确性.本文详细阐述了该计算方法,并在一些正则条件下,给出了模型的参数的估计方法和估计值的渐近正态性.模拟实验和实证分析研究了所提方法在有限样本下的性质.对比均值回归模型和传统的众数回归模型,添加自适应Lasso惩罚项的众数回归模型极大地提高了参数估计的准确性. 展开更多
关键词 众数 核函数 EM算法 自适应Lasso回归
下载PDF
基于PCA和ICA模式融合的非高斯特征检测识别 被引量:1
4
作者 葛泉波 程惠茹 +3 位作者 张明川 郑瑞娟 朱军龙 吴庆涛 《自动化学报》 EI CAS CSCD 北大核心 2024年第1期169-180,共12页
针对无人船(Unmanned surface vehicle,USV)航行位姿观测数据的非高斯性/高斯性判别问题,提出一种基于主成分分析(Principal component analysis,PCA)和独立成分分析(Independent component analysis,ICA)模式融合的非高斯特征检测识别... 针对无人船(Unmanned surface vehicle,USV)航行位姿观测数据的非高斯性/高斯性判别问题,提出一种基于主成分分析(Principal component analysis,PCA)和独立成分分析(Independent component analysis,ICA)模式融合的非高斯特征检测识别方法.首先,采用基于标准化加权平均和信息熵的数据预处理方法.其次,引入混合加权核函数并使用灰狼优化(Grey wolf optimization,GWO)算法进行参数优化,以提高PCA方法的准确性.同时,该算法采用一种新的非线性控制因子策略,提高全局和局部搜索能力.最后,建立了一种基于ICA和PCA联合的相关性分析方法来实现多维数据的降维,在降维数据的基础上综合T型多维偏度峰度检验法和KS(Kolmogorov-Smirnov)检验法进行非高斯性/高斯性特征检测识别.该方法考虑了非线性非高斯的噪声对降维结果精确度的影响,有效降低了多维数据非高斯检测的复杂度,同时也为后续在实际USV位姿估计等应用中提供了保障.实验表明,该方法具有较高的准确性和稳定性,可为USV航行位姿观测数据处理提供支持. 展开更多
关键词 主成分分析 混合核函数 灰狼优化算法 高维降维 非高斯
下载PDF
基于核函数和超参数优化的退役锂电池健康状态估计
5
作者 李臣 张会林 张建平 《储能科学与技术》 CAS CSCD 北大核心 2024年第6期2010-2021,共12页
退役锂电池的健康状态(SOH)估计对于电池再利用和环境可持续性至关重要,考虑到电池退役前使用条件的不确定性,为进一步实现数据驱动方法对退役锂电池SOH的精确估计,本研究提出一种改进高斯过程回归(GPR)模型的SOH估计方法。首先,收集退... 退役锂电池的健康状态(SOH)估计对于电池再利用和环境可持续性至关重要,考虑到电池退役前使用条件的不确定性,为进一步实现数据驱动方法对退役锂电池SOH的精确估计,本研究提出一种改进高斯过程回归(GPR)模型的SOH估计方法。首先,收集退役锂电池的循环充放电数据,在考虑温度影响的同时,使用容量增量分析(ICA)和电化学阻抗谱(EIS)等方法,获取统计健康特征来表征退役锂电池的老化特性,并使用Pearson相关系数对所选统计特征进行相关性分析,筛选出与SOH相关性高的健康特征,消除特征冗余性。然后,基于单一核函数学习老化特征能力有限和传统超参数寻优方法效率不足的特点,将线性核函数和对角平方指数核函数结合,以更好地适应电池SOH估计任务中的多样性,同时,使用鲸鱼算法(WOA)对估计模型的超参数进行优化,以确保最佳拟合效果,建立改进的GPR估计模型以提高估计的精确性。最后,采用NASA电池数据集中具有不同初始健康状况的四个不同电池,来验证所提出方法的有效性,结果表明,本文所提方法可以提供准确的SOH估计,其中平均绝对误差均小于1.75%且均方根误差均小于2.42%。 展开更多
关键词 退役锂电池 健康状态 鲸鱼算法 核函数 高斯过程回归
下载PDF
知识和数据驱动的污水处理反硝化脱氮过程协同优化控制
6
作者 韩红桂 王玉爽 +2 位作者 刘峥 孙浩源 乔俊飞 《自动化学报》 EI CAS CSCD 北大核心 2024年第6期1221-1233,共13页
为有效提升城市污水处理过程的脱氮效果,提出一种知识和数据驱动的反硝化脱氮过程协同优化控制(Knowledge-data-driven cooperative optimal control,KDDCOC).所提方法主要有以下两个方面:首先,建立一种基于自适应知识核函数的协同优化... 为有效提升城市污水处理过程的脱氮效果,提出一种知识和数据驱动的反硝化脱氮过程协同优化控制(Knowledge-data-driven cooperative optimal control,KDDCOC).所提方法主要有以下两个方面:首先,建立一种基于自适应知识核函数的协同优化控制目标模型,动态描述出水水质(Effluent quality,EQ)以及泵送能耗(Pumping energy consumption,PE)、关键变量的协同关系;其次,提出一种知识引导的协同优化算法(Knowledge guide-based cooperative optimization algorithm,KGCO),快速准确求解硝态氮(Nitrate nitrogen,SNO)优化设定值,提高KDDCOC的响应速度.KDDCOC利用比例−积分−微分(Proportional-integral-derivative,PID)控制器对硝态氮优化设定值进行跟踪,将提出的KDDCOC应用于城市污水处理过程基准仿真模型1号(Benchmark simulation model No.1,BSM1),实验结果表明,该方法能够提高出水水质,降低运行能耗,有效改善脱氮效果. 展开更多
关键词 污水处理反硝化脱氮过程 知识和数据驱动 协同优化控制 自适应知识核函数 知识引导的协同优化算法
下载PDF
基于高斯核函数的差分隐私技术联合聚类算法在医疗数据安全中的应用
7
作者 曹自雄 陈宇鲜 蒋秀梅 《中国医疗设备》 2024年第7期28-35,共8页
目的针对数据隐私泄露的风险,提出一种基于高斯核函数的差分隐私技术联合聚类算法。通过对医疗数据的处理和保护,旨在提供一种保证医疗数据隐私安全的解决方案。方法通过介绍医疗数据在机器学习过程中隐私暴露的问题以及差分隐私技术原... 目的针对数据隐私泄露的风险,提出一种基于高斯核函数的差分隐私技术联合聚类算法。通过对医疗数据的处理和保护,旨在提供一种保证医疗数据隐私安全的解决方案。方法通过介绍医疗数据在机器学习过程中隐私暴露的问题以及差分隐私技术原理、差分隐私模糊C均值聚类算法(Differential Privacy Fuzzy C-means Algorithm,DPFCM)和基于高斯核函数的差分隐私模糊C均值聚类算法(Differential Privacy Fuzzy C-means Algorithm Based on Gaussian Kernel Function,DPFCM_GF)的构建过程,采用最大距离法确定初始中心点,使用聚类中心点的高斯值来计算隐私预算分配比率,使用拉普拉斯噪声完成差分隐私保护。通过收集整理心脏病、乳腺癌、甲状腺疾病、糖尿病的公开数据对各算法进行验证。结果DPFCM_GF和DPFCM对不同数据集的聚类效果随隐私预算的增加逐渐改善。DPFCM_GF限值隐私预算分别为1.31、0.85、0.66、1.75,相对DPFCM减少了41.78%、50.29%、53.52%、38.38%,具有较快的收敛迭代速度,增幅差异具有统计学意义(P<0.05)。结论在医疗数据分析中,DPFCM_GF在一定程度上能够保护医疗数据的隐私,同时可提供具有较高准确性的聚类结果,具有潜在的应用前景和市场价值。 展开更多
关键词 高斯核函数 差分隐私技术 聚类算法 模糊C均值聚类算法 隐私预算
下载PDF
基于GA-KFCM算法的高速公路交通运行状态评价研究
8
作者 倪琪 牛传同 方为舟 《现代交通技术》 2024年第2期68-73,共6页
为提升高速公路交通运行状态评价的效果,提出GA-KFCM(genetic algorithm-kernel fuzzy C-means,基于遗传算法改进的核模糊C均值)聚类算法,并结合实例数据对不同方案的分类效果开展验证分析。首先,分析高速公路交通运行状态评价的范围及... 为提升高速公路交通运行状态评价的效果,提出GA-KFCM(genetic algorithm-kernel fuzzy C-means,基于遗传算法改进的核模糊C均值)聚类算法,并结合实例数据对不同方案的分类效果开展验证分析。首先,分析高速公路交通运行状态评价的范围及等级;然后,提出核函数改进的KFCM(kernel fuzzy C-means,核模糊C均值)聚类算法。在此基础上,采用遗传算法弥补初始化聚类中心随机的缺陷,考虑到在选取不同参数时判别模型的差异较大,结合实例数据对改进前后模型的交通运行状态开展聚类分析,并采用综合指标评估不同试验方案的优劣。试验结果表明:与FCM(fuzzy C-means,模糊C均值)聚类算法相比,GA-KFCM算法的聚类效果提升5倍左右;三维交通参数的交通运行状态判别可靠度最高。 展开更多
关键词 高速公路 交通运行状态评价 聚类分析 核函数 遗传算法
下载PDF
基于高斯核函数的差分隐私模糊C均值聚类算法的构建与应用
9
作者 曹自雄 陈宇鲜 蒋秀梅 《中国医学装备》 2024年第8期106-112,共7页
目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最... 目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最大距离法确定初始中心点,使用聚类中心点的高斯值计算隐私预算分配比率,并添加拉普拉斯噪声以完成差分隐私保护,构建DPFCM_GF。收集整理美国加州大学欧文分校机器学习存储库的心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集对DPFCM_GF有效性进行验证,收集2019年1月1日至2022年12月31日淮安市第二人民医院收治的756例胃癌和肺癌患者病例数据集,对DPFCM_GF的可用性进行验证,并将分析结果与模糊C均值聚类算法(FCM)以及差分隐私模糊C均值聚类算法(DPFCM)进行对比分析。结果:对于心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集,DPFCM_GF和DPFCM的最优聚类效果与FCM聚类效果相当;相较于DPFCM,DPFCM_GF迭代时间更快,聚集速度显著,差异有统计学意义(t=4.01、4.71、4.01、12.38,P<0.05)。对于肺癌和胃癌数据集,随着隐私预算ε的增大,DPFCM_GF正确识别率逐渐聚集于91.9%和93.9%,受试者工作特征(ROC)曲线下面积(AUC)值分别为0.79和0.81;当隐私函数ε为0.1、0.5、1和2(ε<3)时,DPFCM_GF聚类效果显著优于DPFCM,且聚类效果更佳,差异有统计学意义(χ^(2)=12.25、87.12、68.58、7.76,P<0.05;χ^(2)=4.74、43.51、42.47、4.89,P<0.05)。结论:DPFCM_GF是一种有效保护医疗数据隐私的方法,同时也可进行数据分析和挖掘任务,具有一定的研究意义和研究前景。 展开更多
关键词 数据隐私 差分隐私 模糊C均值聚类算法 高斯核函数 数据挖掘 隐私预算
下载PDF
带有删失函数型协变量的非参数模型的估计研究
10
作者 李响 王纯杰 +1 位作者 卢哲昕 徐萍 《通化师范学院学报》 2024年第2期46-51,共6页
该文在删失函数型协变量背景下,研究非参数模型的估计问题,通过使用曲线扩展算法把删失函数型数据扩展为完整函数型数据.该算法具有很好的准确性和灵活性,避免了删失函数型数据难以建模的问题.使用函数型核估计方法得到模型中非线性算... 该文在删失函数型协变量背景下,研究非参数模型的估计问题,通过使用曲线扩展算法把删失函数型数据扩展为完整函数型数据.该算法具有很好的准确性和灵活性,避免了删失函数型数据难以建模的问题.使用函数型核估计方法得到模型中非线性算子的估计值.通过数值模拟验证该算法的有效性和删失函数型数据对非参数模型的影响,并应用于肝硬化数据集的数据分析中. 展开更多
关键词 删失函数型数据 曲线扩展算法 非参数模型 核估计
下载PDF
基于kernel K-means算法的城市交通客流量分析 被引量:3
11
作者 闫明月 《物流技术》 北大核心 2013年第9期158-160,213,共4页
基于核函数这种基于统计学习理论的方法,介绍了kernel K-means算法的基本原理与步骤,与传统的K-means算法进行了对比分析,无论是运算速度还是算法有效性,kernel K-means算法都优于传统的K-means算法,并应用于实际的城市交通客流量数据... 基于核函数这种基于统计学习理论的方法,介绍了kernel K-means算法的基本原理与步骤,与传统的K-means算法进行了对比分析,无论是运算速度还是算法有效性,kernel K-means算法都优于传统的K-means算法,并应用于实际的城市交通客流量数据分析实验,结果验证了方法的有效性,为城市交通规律分析、城市规划与交通政策的制定提供了依据。 展开更多
关键词 传统K-means算法 kernel K-MEANS算法 核函数 城市交通 客流量
下载PDF
基于核极限学习机的下肢关节力矩预测方法
12
作者 宋永献 王祥祥 +3 位作者 李媛媛 夏文豪 李豪 宋文泽 《科学技术与工程》 北大核心 2024年第11期4599-4606,共8页
针对极限学习机(extreme learning machine,ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine,KELM)的下肢康复机器人关节力矩预测方法。该方法将... 针对极限学习机(extreme learning machine,ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine,KELM)的下肢康复机器人关节力矩预测方法。该方法将高斯核函数与ELM相融合,并采用遗传算法(genetic algorithm,GA)与粒子群优化(particle swarm optimization,PSO)结合的基因粒子群GAPSO对KELM的参数进行优化。首先,采集1位在跑步机上以0.4、0.5、0.6、0.7和0.8 m/s等5个不同速度行走的右下肢偏瘫患者运动数据并对数据进行预处理;其次,通过GAPSO对KELM进行优化,获得最优正则化系数C和核函数宽度参数S,将输出关节力矩与反向生物力学分析计算的关节作比较;最后,利用均方根误差(root mean square error,RMSE)和相关系数P来评价算法优越性。实验结果表明,基于GAPSO优化后的KELM(GAPSO-KELM)算法相对于PSO-KELM算法、KELM算法和ELM算法的平均最大均方根误差分别降低14%、18%、28%,且P除了0.8 m/s右侧踝关节内外翻是0.79外,其余P最小是0.84,GAPSO-KELM算法进一步提高预测精度,使其为康复治疗提供更有效的算法支持。 展开更多
关键词 高斯核函数 极限学习机 粒子群优化算法 遗传算法 均方根误差 相关系数
下载PDF
Blind source separation algorithm based on support vector machines 被引量:1
13
作者 HE Xuan-sen HU Bo-ping 《通讯和计算机(中英文版)》 2008年第11期7-12,共6页
关键词 通信技术 盲源分离算法 计算方法 径向基函数 概率密度函数
下载PDF
联合自然梯度和AdamW算法的RSF图像分割模型 被引量:2
14
作者 蔡玉芳 王涵 +1 位作者 李琦 王小军 《仪器仪表学报》 EI CAS CSCD 北大核心 2023年第3期261-270,共10页
关键零件内部复杂结构的精密测量是高端制造领域攻克的难题。当采用工业CT技术实现对象内部结构精密测量时,面临目标图像灰度不均匀性、边缘模糊、伪影等问题。有鉴于此,本文研究了局部能量最小化模型(RSF)的图像分割方法,引入自然梯度... 关键零件内部复杂结构的精密测量是高端制造领域攻克的难题。当采用工业CT技术实现对象内部结构精密测量时,面临目标图像灰度不均匀性、边缘模糊、伪影等问题。有鉴于此,本文研究了局部能量最小化模型(RSF)的图像分割方法,引入自然梯度和AdamW算法分别提高了RSF模型的收敛速度和参数自适应性。首先,在统计流形上计算自然梯度,提高梯度下降效率和RSF模型收敛速度;其次,采用AdamW算法实现RSF模型的高斯核函数尺度大小自适应控制。与经典RSF模型相比,改进后的RSF模型迭代次数减少了1353次,迭代次数降低约76.79%,迭代时间减少约43.61%,测针球面半径和航空燃油喷嘴圆柱直径测量误差均较小,既保持了原模型亚像素分割精度,又大幅提高了模型收敛速度和鲁棒性。 展开更多
关键词 主动轮廓模型 水平集 自然梯度 AdamW算法 高斯核函数 参数自适应 图像分割
下载PDF
基于IDOA-DHKELM的变压器故障诊断 被引量:5
15
作者 商立群 侯亚东 +3 位作者 黄辰浩 李洪波 惠泽 张建涛 《高电压技术》 EI CAS CSCD 北大核心 2023年第11期4726-4735,共10页
针对溶解气体分析(dissolved gas analysis,DGA)诊断变压器故障准确率偏低的问题,提出了一种基于改进野犬优化算法(improved dingo optimization algorithm,IDOA)优化深度混合核极限学习机(deep hybrid kernel extreme learning machine... 针对溶解气体分析(dissolved gas analysis,DGA)诊断变压器故障准确率偏低的问题,提出了一种基于改进野犬优化算法(improved dingo optimization algorithm,IDOA)优化深度混合核极限学习机(deep hybrid kernel extreme learning machine,DHKELM)的变压器故障诊断方法。首先采用核主成分分析(kernel principal component analysis,KPCA)对气体数据降维并提取有效的特征量;其次将多项式核函数与高斯核函数加权结合,构造出新的混合核函数,并引入自动编码器对极限学习机进行改进,建立DHKELM模型。将反向学习、柯西变异和差分进化算法融入到野犬算法中,并利用2种典型的测试函数对IDOA性能进行测试,证明了IDOA具有更强的稳定性和寻优能力。利用IDOA对DHKELM的关键参数进行寻优,建立IDOA-DHKELM变压器故障诊断模型。最后,将KPCA提取的特征量作为模型的输入集,并对不同变压器故障诊断模型进行仿真验证。研究结果表明,相较于其他模型,IDOA-DHKELM具有更高的变压器故障诊断精度。 展开更多
关键词 变压器 故障诊断 溶解气体分析 深度极限学习机 混合核函数 改进野犬优化算法
下载PDF
Incorporating Prior Knowledge into Kernel Based Regression
16
作者 SUN Zhe ZHANG Zeng-Ke WANG Huan-Gang 《自动化学报》 EI CSCD 北大核心 2008年第12期1515-1521,共7页
在一些,样品基于回归任务,观察样品是相当很少足够增进知识。作为结果,在样品和模型复杂性的数字之间的冲突出现,并且回归方法将面对窘境是否选择一个复杂模型。合并优先的知识是这窘境的一个潜在的解决方案。在这份报纸,一种优先... 在一些,样品基于回归任务,观察样品是相当很少足够增进知识。作为结果,在样品和模型复杂性的数字之间的冲突出现,并且回归方法将面对窘境是否选择一个复杂模型。合并优先的知识是这窘境的一个潜在的解决方案。在这份报纸,一种优先的知识被调查,把它合并到核的一个新奇方法基于回归计划被建议。建议优先的 knowledge based 核回归(PKBKR ) 方法包括二 subproblems:在函数空间代表优先的知识,并且联合这个代表和训练样品获得回归函数。为代表的步的一个贪婪算法和为加入步的加权的损失功能被建议。最后,实验被执行验证建议 PKBKR 方法,结果在那里证明建议方法能与适当模型复杂性完成相对高的回归性能,特别当样品的数字是小的或观察噪音大时。 展开更多
关键词 计算方法 回归方程 机械学习 自动化系统
下载PDF
基于SABA优化的Volterra级数空战目标机动轨迹预测 被引量:4
17
作者 李战武 彭明毓 +3 位作者 高春庆 杨爱武 徐安 方诚喆 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第3期503-513,共11页
目标机动轨迹预测是空战态势感知和目标威胁评估的重要前提。针对传统目标机动轨迹预测模型复杂度大、预测精度低等问题,通过分析并结合目标机动轨迹时序数据所具备的混沌特性,引入Volterra泛函级数模型进行目标机动轨迹预测。为解决Vol... 目标机动轨迹预测是空战态势感知和目标威胁评估的重要前提。针对传统目标机动轨迹预测模型复杂度大、预测精度低等问题,通过分析并结合目标机动轨迹时序数据所具备的混沌特性,引入Volterra泛函级数模型进行目标机动轨迹预测。为解决Volterra泛函级数模型中存在高阶核函数难以求解的问题,利用变异机制和自适应步长控制机制改进蝙蝠算法的寻优能力,进而构建了一种基于自适应蝙蝠算法(SABA)优化的Volterra泛函级数目标机动轨迹预测模型,并利用优化后不同阶数的Volterra泛函级数模型对目标未来机动轨迹进行预测。仿真实验中,通过与其他优化算法改进的Volterra泛函级数模型的预测精度对比,验证了所提预测模型的可行性,同时也说明了二阶Volterra泛函级数模型更加适用于目标机动轨迹预测。 展开更多
关键词 轨迹预测 Volterra泛函级数模型 核参数优化 自适应蝙蝠算法 截断阶数
下载PDF
基于BOA-LSSVM的电力推进船舶负荷预测
18
作者 舒方舟 王莹 +1 位作者 戴晓强 刘维亭 《舰船科学技术》 北大核心 2023年第20期159-166,共8页
船舶电力系统容量小,负荷波动性强,船舶电力负荷预测对于船舶电力系统的稳定性和安全性意义重大。本文提出一种能够对船舶电力负荷进行有效且准确的负荷预测方法,在传统的以最小二乘支持向量机作为船舶电力负荷预测方法的基础上,将变种... 船舶电力系统容量小,负荷波动性强,船舶电力负荷预测对于船舶电力系统的稳定性和安全性意义重大。本文提出一种能够对船舶电力负荷进行有效且准确的负荷预测方法,在传统的以最小二乘支持向量机作为船舶电力负荷预测方法的基础上,将变种卡方核函数与RBF核函数相结合,同时支持向量机的正则化参数C和标准化参数σ的取值对预测精度影响较大,故使用改进的蝴蝶优化算法对预测模型中的参数以及变种卡方核函数的权重系数进行寻优。仿真结果表明,本文提出的预测方法将负荷预测精度提升至97.5119%,因变种卡方核函数的引入,算法能够对特征向量分量权重进行自动调节,并且经蝴蝶优化算法进行参数寻优后的预测模型更为准确,船舶电力负荷预测精度得到进一步提升。 展开更多
关键词 电力推进船舶 负荷预测 支持向量机 组合核函数 蝴蝶优化算法
下载PDF
联合Huber核函数与可切换约束算法改进的视觉惯性SLAM方法 被引量:2
19
作者 赵前程 田俊英 伍济钢 《中国惯性技术学报》 EI CSCD 北大核心 2023年第4期375-380,共6页
针对目前VINS-Fusion双目视觉及惯性同步定位与建图(SLAM)在后端优化时存在误匹配而导致系统定位精度低、鲁棒性差的问题,提出了一种联合Huber核函数与可切换约束算法改进的双目视觉及惯性SLAM方法。在VINS-Fusion双目视觉与惯性SLAM框... 针对目前VINS-Fusion双目视觉及惯性同步定位与建图(SLAM)在后端优化时存在误匹配而导致系统定位精度低、鲁棒性差的问题,提出了一种联合Huber核函数与可切换约束算法改进的双目视觉及惯性SLAM方法。在VINS-Fusion双目视觉与惯性SLAM框架的基础上,利用Huber核函数的权值重新构建并求解状态优化中IMU残差的代价函数,降低优化中过大的误差项;同时使用可切换约束算法控制环路闭合因子实现动态协方差矩阵的缩放,剔除闭环检测的异常值实现准确的后端收敛。利用不同场景的公开数据集EuRoc中进行了对比验证实验,结果表明联合改进方法的和方差降低了2.416 m,系统精度和鲁棒性都有所提高;同时在实际场景中的实验也验证了改进方法的可行性。 展开更多
关键词 同步定位与建图 双目视觉 惯性测量单元 Huber核函数 可切换约束算法
下载PDF
基于主成分分析与ILM-DGRBF网络的SOH估算
20
作者 李亚飞 王泰华 +1 位作者 张润雨 张家乐 《电子测量技术》 北大核心 2023年第17期30-36,共7页
针对锂离子电池健康状态(SOH)估算精度低的问题,提出一种基于主成分分析(PCA)与改进LM算法-双高斯核RBF(ILM-DGRBF)神经网络的方法,实现了SOH的准确估算。首先,提取与锂离子电池容量衰退高度相关的健康因子(HI),采用PCA方法进行降维处理... 针对锂离子电池健康状态(SOH)估算精度低的问题,提出一种基于主成分分析(PCA)与改进LM算法-双高斯核RBF(ILM-DGRBF)神经网络的方法,实现了SOH的准确估算。首先,提取与锂离子电池容量衰退高度相关的健康因子(HI),采用PCA方法进行降维处理,减少HI之间冗余度。其次,创建双高斯核RBF神经网络,利用改进LM算法实现网络参数在线学习,建立ILM-DGRBF神经网络。再次,利用数据增强的电池测试数据训练ILM-DGRBF实现SOH估算。验证表明,经PCA降维得到的主成分1能够有效地反应锂离子电池的老化趋势,可用于SOH的估算;与其他模型相比,所建ILM-DGRBF模型具有更高的估算精度和更好的鲁棒性,估算结果的误差控制在1.5%以内。最后,基于该方法构建一种新的SOH智能估算系统,为电池安全管理提供参考依据。 展开更多
关键词 锂离子电池 健康状态 主成分分析 RBF神经网络 高斯核函数 LM算法
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部