A novel nonlinear combination process monitoring method was proposed based on techniques with memo- ry effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis ...A novel nonlinear combination process monitoring method was proposed based on techniques with memo- ry effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis (KICA). The method was developed for dealing with nonlinear issues and detecting small or moderate drifts in one or more process variables with autocorrelation. MEWMA charts use additional information from the past history of the process for keeping the memory effect of the process behavior trend. KICA is a recently devel- oped statistical technique for revealing hidden, nonlinear statistically independent factors that underlie sets of mea- surements and it is a two-phase algorithm., whitened kernel principal component analysis (KPCA) plus indepen- dent component analysis (ICA). The application to the fluid catalytic cracking unit (FCCU) simulated process in- dicates that the proposed combined method based on MEWMA and KICA can effectively capture the nonlinear rela- tionship and detect small drifts in process variables. Its performance significantly outperforms monitoring method based on ICA, MEWMA-ICA and KICA, especially for lonu-term performance deterioration.展开更多
The precision of the kernel independent component analysis( KICA) algorithm depends on the type and parameter values of kernel function. Therefore,it's of great significance to study the choice method of KICA'...The precision of the kernel independent component analysis( KICA) algorithm depends on the type and parameter values of kernel function. Therefore,it's of great significance to study the choice method of KICA's kernel parameters for improving its feature dimension reduction result. In this paper, a fitness function was established by use of the ideal of Fisher discrimination function firstly. Then the global optimal solution of fitness function was searched by particle swarm optimization( PSO) algorithm and a multi-state information dimension reduction algorithm based on PSO-KICA was established. Finally,the validity of this algorithm to enhance the precision of feature dimension reduction has been proven.展开更多
In order to facilitate the extraction of the default mode network(DMN), reduce the data complexity of the functional magnetic resonance imaging (fMRI)and overcome the restriction of the linearity of the mixing pro...In order to facilitate the extraction of the default mode network(DMN), reduce the data complexity of the functional magnetic resonance imaging (fMRI)and overcome the restriction of the linearity of the mixing process encountered with the independent component analysis(ICA), a framework of dimensionality reduction and nonlinear transformation is proposed. First, the principal component analysis(PCA)is applied to reduce the time dimension 153 594×128 of the fMRI data to 153 594×5 for simplifying complexity computation and obtaining 95% of the information. Secondly, a new kernel-based nonlinear ICA method referred as the kernel ICA(KICA)based on the Gaussian kernel is introduced to analyze the resting-state fMRI data and extract the DMN. Experimental results show that the KICA provides a better performance for the resting-state fMRI data analysis compared with the classical ICA. Furthermore, the DMN is accurately extracted and the noise is reduced.展开更多
基金The National Natural Science Foundation ofChina(No60504033)
文摘A novel nonlinear combination process monitoring method was proposed based on techniques with memo- ry effect (multivariate exponentially weighted moving average (MEWMA)) and kernel independent component analysis (KICA). The method was developed for dealing with nonlinear issues and detecting small or moderate drifts in one or more process variables with autocorrelation. MEWMA charts use additional information from the past history of the process for keeping the memory effect of the process behavior trend. KICA is a recently devel- oped statistical technique for revealing hidden, nonlinear statistically independent factors that underlie sets of mea- surements and it is a two-phase algorithm., whitened kernel principal component analysis (KPCA) plus indepen- dent component analysis (ICA). The application to the fluid catalytic cracking unit (FCCU) simulated process in- dicates that the proposed combined method based on MEWMA and KICA can effectively capture the nonlinear rela- tionship and detect small drifts in process variables. Its performance significantly outperforms monitoring method based on ICA, MEWMA-ICA and KICA, especially for lonu-term performance deterioration.
文摘The precision of the kernel independent component analysis( KICA) algorithm depends on the type and parameter values of kernel function. Therefore,it's of great significance to study the choice method of KICA's kernel parameters for improving its feature dimension reduction result. In this paper, a fitness function was established by use of the ideal of Fisher discrimination function firstly. Then the global optimal solution of fitness function was searched by particle swarm optimization( PSO) algorithm and a multi-state information dimension reduction algorithm based on PSO-KICA was established. Finally,the validity of this algorithm to enhance the precision of feature dimension reduction has been proven.
基金Key Academic Discipline during the11th Five-Year Plan Period of Jiangsu Province
文摘In order to facilitate the extraction of the default mode network(DMN), reduce the data complexity of the functional magnetic resonance imaging (fMRI)and overcome the restriction of the linearity of the mixing process encountered with the independent component analysis(ICA), a framework of dimensionality reduction and nonlinear transformation is proposed. First, the principal component analysis(PCA)is applied to reduce the time dimension 153 594×128 of the fMRI data to 153 594×5 for simplifying complexity computation and obtaining 95% of the information. Secondly, a new kernel-based nonlinear ICA method referred as the kernel ICA(KICA)based on the Gaussian kernel is introduced to analyze the resting-state fMRI data and extract the DMN. Experimental results show that the KICA provides a better performance for the resting-state fMRI data analysis compared with the classical ICA. Furthermore, the DMN is accurately extracted and the noise is reduced.