期刊文献+
共找到1,493篇文章
< 1 2 75 >
每页显示 20 50 100
基于kernel K-means算法的城市交通客流量分析 被引量:3
1
作者 闫明月 《物流技术》 北大核心 2013年第9期158-160,213,共4页
基于核函数这种基于统计学习理论的方法,介绍了kernel K-means算法的基本原理与步骤,与传统的K-means算法进行了对比分析,无论是运算速度还是算法有效性,kernel K-means算法都优于传统的K-means算法,并应用于实际的城市交通客流量数据... 基于核函数这种基于统计学习理论的方法,介绍了kernel K-means算法的基本原理与步骤,与传统的K-means算法进行了对比分析,无论是运算速度还是算法有效性,kernel K-means算法都优于传统的K-means算法,并应用于实际的城市交通客流量数据分析实验,结果验证了方法的有效性,为城市交通规律分析、城市规划与交通政策的制定提供了依据。 展开更多
关键词 传统k-means算法 kernel k-means算法 核函数 城市交通 客流量
下载PDF
Geochemical and Geostatistical Studies for Estimating Gold Grade in Tarq Prospect Area by K-Means Clustering Method 被引量:7
2
作者 Adel Shirazy Aref Shirazi +1 位作者 Mohammad Hossein Ferdossi Mansour Ziaii 《Open Journal of Geology》 2019年第6期306-326,共21页
Tarq geochemical 1:100,000 Sheet is located in Isfahan province which is investigated by Iran’s Geological and Explorations Organization using stream sediment analyzes. This area has stratigraphy of Precambrian to Qu... Tarq geochemical 1:100,000 Sheet is located in Isfahan province which is investigated by Iran’s Geological and Explorations Organization using stream sediment analyzes. This area has stratigraphy of Precambrian to Quaternary rocks and is located in the Central Iran zone. According to the presence of signs of gold mineralization in this area, it is necessary to identify important mineral areas in this area. Therefore, finding information is necessary about the relationship and monitoring the elements of gold, arsenic, and antimony relative to each other in this area to determine the extent of geochemical halos and to estimate the grade. Therefore, a well-known and useful K-means method is used for monitoring the elements in the present study, this is a clustering method based on minimizing the total Euclidean distances of each sample from the center of the classes which are assigned to them. In this research, the clustering quality function and the utility rate of the sample have been used in the desired cluster (S(i)) to determine the optimum number of clusters. Finally, with regard to the cluster centers and the results, the equations were used to predict the amount of the gold element based on four parameters of arsenic and antimony grade, length and width of sampling points. 展开更多
关键词 GOLD Tarq k-means Clustering method Estimation of the ELEMENTS GRADE k-means
下载PDF
AHermitian C^(2) Differential Reproducing Kernel Interpolation Meshless Method for the 3D Microstructure-Dependent Static Flexural Analysis of Simply Supported and Functionally Graded Microplates
3
作者 Chih-Ping Wu Ruei-Syuan Chang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期917-949,共33页
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend... This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant. 展开更多
关键词 Consistent/modified couple stress theory differential reproducing kernel methods microplates point collocation methods static flexural 3D microstructure-dependent analysis
下载PDF
An Improved Kernel K-Mean Cluster Method and Its Application in Fault Diagnosis of Roller Bearing 被引量:2
4
作者 Ling-Li Jiang Yu-Xiang Cao +1 位作者 Hua-Kui Yin Kong-Shu Deng 《Engineering(科研)》 2013年第1期44-49,共6页
For the kernel K-mean cluster method is run in an implicit feature space, the initial and iterative cluster centers cannot be defined explicitly. Against the deficiency of the initial cluster centers selected in the o... For the kernel K-mean cluster method is run in an implicit feature space, the initial and iterative cluster centers cannot be defined explicitly. Against the deficiency of the initial cluster centers selected in the original space discretionarily in the existing methods, this paper proposes a new method for ensuring the clustering center that virtual clustering centers are defined in the feature space by the original classification as the initial cluster centers and the iteration clustering centers are ensured by the further virtual classification. The improved method is used for fault diagnosis of roller bearing that achieves a good cluster and diagnosis result, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 IMPROVED kernel k-mean CLUSTER FAULT Diagnosis ROLLER BEARING
下载PDF
基于函数型数据分析和k-means算法的电力用户分类(英文) 被引量:21
5
作者 张欣 高卫国 苏运 《电网技术》 EI CSCD 北大核心 2015年第11期3153-3162,共10页
为了对大量电力用户的稀疏、不规律的日耗电量数据进行特征分析,并对用户进行分类,文章提出一种函数性数据聚类分析方法。首先,应用kernel方法将离散的电量数据还原成连续曲线;然后,受Sobolev空间距离的启发,定义了新的函数距离,用于k-m... 为了对大量电力用户的稀疏、不规律的日耗电量数据进行特征分析,并对用户进行分类,文章提出一种函数性数据聚类分析方法。首先,应用kernel方法将离散的电量数据还原成连续曲线;然后,受Sobolev空间距离的启发,定义了新的函数距离,用于k-means算法进行聚类。以某城市10 000户居民538天的实际用电数据进行实验,得到了用户在不同距离和聚类个数下的聚类原型。实验结果显示,由于选取的用户主要是城市居民,其用电模式比较相似:大高峰时段主要在6—9月,小高峰时段主要在1—2月,日消耗波动较小。而不同用户类别的主要区别体现在用电量的范围上:低耗电用户整体低于13 k W?h/天,高耗电用户接近100 k W?h/天。 展开更多
关键词 函数性数据分析 k-means kernel方法 智能电表 数据分析
下载PDF
粗糙核k-means聚类算法 被引量:15
6
作者 周涛 张艳宁 +2 位作者 袁和金 陆惠玲 邓方安 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第4期921-925,共5页
通过研究核聚类算法,以及粗糙集,提出了一个新的用于聚类分析的粗糙核聚类方法。通过mercer核映射把输入空间中的样本映射到Hilbert空间,使样本空间中没有显现的特征在特征空间中突现出来,在这种样本差异加大的基础上,结合粗糙集的思想... 通过研究核聚类算法,以及粗糙集,提出了一个新的用于聚类分析的粗糙核聚类方法。通过mercer核映射把输入空间中的样本映射到Hilbert空间,使样本空间中没有显现的特征在特征空间中突现出来,在这种样本差异加大的基础上,结合粗糙集的思想,把样本分别划到相应聚类中心的上、下近似中,上、下近似中的样本按照一定的比例来共同决定新的聚类中心。这样不但聚类精度大大提高,而且算法收敛速度也较快。仿真实验的结果表明该算法的可行性和有效性。 展开更多
关键词 核方法 核聚类算法 k-means 粗糙集 粗糙聚类
下载PDF
h-ADAPTIVITY ANALYSIS BASED ON MULTIPLE SCALE REPRODUCING KERNEL PARTICLE METHOD 被引量:2
7
作者 张智谦 周进雄 +2 位作者 王学明 张艳芬 张陵 《应用数学和力学》 EI CSCD 北大核心 2005年第8期972-978,共7页
An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-trian... An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) tech-niques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h-adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h-adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property. 展开更多
关键词 无网格方法 再生核质点法 多分辨分析 自适应分析
下载PDF
h-ADAPTIVITY ANALYSIS BASED ON MULTIPLE SCALE REPRODUCING KERNEL PARTICLE METHOD 被引量:4
8
作者 ZHANG Zhi-qian(张智谦) ZHOU Jin-xiong(周进雄) +2 位作者 WANG Xue-ming(王学明) ZHANG Yan-fen(张艳芬) ZHANG Ling(张陵) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第8期1064-1071,共8页
An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-tri... An h-adaptivity analysis scheme based on multiple scale reproducing kernel particle method was proposed, and two node refinement strategies were constructed using searching-neighbor-nodes(SNN) and local-Delaunay-triangulation(LDT) techniques, which were suitable and effective for h-adaptivity analysis on 2-D problems with the regular or irregular distribution of the nodes. The results of multiresolution and h- adaptivity analyses on 2-D linear elastostatics and bending plate problems demonstrate that the improper high-gradient indicator will reduce the convergence property of the h- adaptivity analysis, and that the efficiency of the LDT node refinement strategy is better than SNN, and that the presented h-adaptivity analysis scheme is provided with the validity, stability and good convergence property. 展开更多
关键词 meshfree method reproducing kernel particle method multiresolution analysis adaptive analysis
下载PDF
The complex variable reproducing kernel particle method for two-dimensional elastodynamics 被引量:2
9
作者 陈丽 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期59-70,共12页
On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is present... On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM. 展开更多
关键词 meshless method reproducing kernel particle method complex variable reproducing kernel particle method elastodvnamics
下载PDF
ANALYSIS OF THREE-DIMENSIONAL UPSETTING PROCESS BY THE RIGID-PLASTIC REPRODUCING KERNEL PARTICLE METHOD 被引量:2
10
作者 Y. H. Liu J. Chen S. Yu X. W. Chen 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第5期371-378,共8页
A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow t... A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow theory of 3D rigid-plastic mechanics. For the treatments of essential boundary conditions and incompressibility constraint, the boundary singular kernel method and the modified penalty method are utilized, respectively. The arc-tangential friction model is employed to treat the contact conditions. The compression of rectangular blocks, a typical 3D upsetting operation, is analyzed for different friction conditions and the numerical results are compared with those obtained using commercial rigid-plastic FEM (finite element method) software Deform^3D. As results show, when handling 3D plastic deformations, the proposed approach eliminates the need of expensive meshing and remeshing procedures which are unavoidable in conventional FEM and can provide results that are in good agreement with finite element predictions. 展开更多
关键词 MESHLESS reproducing kernel particle method(RKPM) three-dimensional upsetting INCOMPRESSIBILITY modified penalty method
下载PDF
Combining the complex variable reproducing kernel particle method and the finite element method for solving transient heat conduction problems 被引量:2
11
作者 陈丽 马和平 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期67-74,共8页
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho... In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method. 展开更多
关键词 complex variable reproducing kernel particle method finite element method combined method transient heat conduction
下载PDF
An interpolating reproducing kernel particle method for two-dimensional scatter points 被引量:2
12
作者 秦义校 刘营营 +1 位作者 李中华 杨明 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期238-241,共4页
An interpolating reproducing kernel particle method for two-dimensional (2D) scatter points is introduced. It elim- inates the dependency of gridding in numerical calculations. The interpolating shape function in th... An interpolating reproducing kernel particle method for two-dimensional (2D) scatter points is introduced. It elim- inates the dependency of gridding in numerical calculations. The interpolating shape function in the interpolating repro- ducing kernel particle method satisfies the property of the Kronecker delta function. This method offers a mathematics basis for recognition technology and simulation analysis, which can be expressed as simultaneous differential equations in science or project problems. Mathematical examples are given to show the validity of the interpolating reproducing kernel particle method. 展开更多
关键词 interpolating reproducing kernel particle method point interpolating characteristic scatter points
下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
13
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy C-means clustering.
下载PDF
Classification of Northeast China Cold Vortex Activity Paths in Early Summer Based on K-means Clustering and Their Climate Impact 被引量:11
14
作者 Yihe FANG Haishan CHEN +3 位作者 Yi LIN Chunyu ZHAO Yitong LIN Fang ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第3期400-412,共13页
The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the... The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the atmospheric circulation field and temperature field data of ERA-Interim for every six hours,the NCCV processes during the early summer(June)seasons from 1979 to 2018 were objectively identified.Then,the NCCV processes were classified using a machine learning method(k-means)according to the characteristic parameters of the activity path information.The rationality of the classification results was verified from two aspects,as follows:(1)the atmospheric circulation configuration of the NCCV on various paths;and(2)its influences on the climate conditions in the NEC.The obtained results showed that the activity paths of the NCCV could be divided into four types according to such characteristics as the generation origin,movement direction,and movement velocity of the NCCV.These included the generation-eastward movement type in the east of the Mongolia Plateau(eastward movement type or type A);generation-southeast longdistance movement type in the upstream of the Lena River(southeast long-distance movement type or type B);generationeastward less-movement type near Lake Baikal(eastward less-movement type or type C);and the generation-southward less-movement type in eastern Siberia(southward less-movement type or type D).There were obvious differences observed in the atmospheric circulation configuration and the climate impact of the NCCV on the four above-mentioned types of paths,which indicated that the classification results were reasonable. 展开更多
关键词 northeastern China early summer Northeast China Cold Vortex classification of activity paths machine learning method k-means clustering high-pressure blocking
下载PDF
Study of corn kernel breakage susceptibility as a function of its moisture content by using a laboratory grinding method 被引量:3
15
作者 GUO Ya-nan HOU Liang-yu +8 位作者 LI Lu-lu GAO Shang HOU Jun-feng MING Bo XIE Rui-zhi XUE Jun HOU Peng WANG Ke-ru LI Shao-kun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第1期70-77,共8页
The rate of corn kernel breakage in the grain combine harvesters is a crucial factor affecting the quality of the grain shelled in the field. The objective of the present study was to determine the susceptibility of c... The rate of corn kernel breakage in the grain combine harvesters is a crucial factor affecting the quality of the grain shelled in the field. The objective of the present study was to determine the susceptibility of corn kernels to breakage based on the kernel moisture content in order to determine the moisture content that corresponds to the lowest rate of breakage.In addition, we evaluated the resistance to breakage of various corn cultivars. A total of 17 different corn cultivars were planted at two different sowing dates at the Beibuchang Experiment Station, Beijing and the Xinxiang Experiment Station(Henan Province) of the Chinese Academy of Agricultural Sciences. The corn kernel moisture content was systematically monitored and recorded over time, and the breakage rate was measured by using the grinding method. The results for all grain samples from the two experimental stations revealed that the breakage rate y is quadratic in moisture content x,y=0.0796 x^(2)-3.3929 x+78.779;R^(2)0=0.2646, n=512. By fitting to the regression equation, a minimum corn kernel breakage rate of 42.62% was obtained, corresponding to a corn kernel moisture content of 21.31%. Furthermore, in the 90% confidence interval, the corn kernel moisture ranging from 19.7 to 22.3% led to the lowest kernel breakage rate, which was consistent with the corn kernel moisture content allowing the lowest breakage rate of corn kernels shelled in the field with combine grain harvesters. Using the lowest breakage rate as the critical point, the correlation between breakage rate and moisture content was significantly negative for low moisture content but positive for high moisture content. The slope and correlation coefficient of the linear regression equation indicated that high moisture content led to greater sensitivity and correlation between grain breakage and moisture content. At the Beibuchang Experiment Station, the corn cultivars resistant to breakage were Zhengdan 958(ZD958) and Fengken 139(FK139), and the corn cultivars non-resistant to breakage were Lianchuang 825(LC825), Jidan 66(JD66), Lidan 295(LD295), and Jingnongke 728(JNK728). At the Xinxiang Experiment Station, the corn cultivars resistant to breakage were HT1, ZD958 and FK139, and the corn cultivars non-resistant to breakage were ZY8911, DK653 and JNK728. Thus, the breakage classifications of the six corn cultivars were consistent between the two experimental stations. In conclusion, the results suggested that the high stability of the grinding method allowed it to be used to determine the corn kernel breakage rates of different corn cultivars as a function of moisture content, thus facilitating the breeding and screening of breakage-resistant corn. 展开更多
关键词 corn variety corn kernel breakage susceptibility moisture content grinding method
下载PDF
Kohn-Sham Density Matrix and the Kernel Energy Method 被引量:1
16
作者 POLKOSNIK Walter MASSA Lou 《物理化学学报》 SCIE CAS CSCD 北大核心 2018年第6期656-661,共6页
The kernel energy method(KEM) has been shown to provide fast and accurate molecular energy calculations for molecules at their equilibrium geometries.KEM breaks a molecule into smaller subsets,called kernels,for the p... The kernel energy method(KEM) has been shown to provide fast and accurate molecular energy calculations for molecules at their equilibrium geometries.KEM breaks a molecule into smaller subsets,called kernels,for the purposes of calculation.The results from the kernels are summed according to an expression characteristic of KEM to obtain the full molecule energy.A generalization of the kernel expansion to density matrices provides the full molecule density matrix and orbitals.In this study,the kernel expansion for the density matrix is examined in the context of density functional theory(DFT) Kohn-Sham(KS) calculations.A kernel expansion for the one-body density matrix analogous to the kernel expansion for energy is defined,and is then converted into a normalizedprojector by using the Clinton algorithm.Such normalized projectors are factorizable into linear combination of atomic orbitals(LCAO) matrices that deliver full-molecule Kohn-Sham molecular orbitals in the atomic orbital basis.Both straightforward KEM energies and energies from a normalized,idempotent density matrix obtained from a density matrix kernel expansion to which the Clinton algorithm has been applied are compared to reference energies obtained from calculations on the full system without any kernel expansion.Calculations were performed both for a simple proof-of-concept system consisting of three atoms in a linear configuration and for a water cluster consisting of twelve water molecules.In the case of the proof-of-concept system,calculations were performed using the STO-3 G and6-31 G(d,p) bases over a range of atomic separations,some very far from equilibrium.The water cluster was calculated in the 6-31 G(d,p) basis at an equilibrium geometry.The normalized projector density energies are more accurate than the straightforward KEM energy results in nearly all cases.In the case of the water cluster,the energy of the normalized projector is approximately four times more accurate than the straightforward KEM energy result.The KS density matrices of this study are applicable to quantum crystallography. 展开更多
关键词 Kohn SHAM density matrix kernel energy method N-REPRESENTABILITY QUANTUM CRYSTALLOGRAPHY Watercluster
下载PDF
Application of K-means and PCA approaches to estimation of gold grade in Khooni district(central Iran) 被引量:3
17
作者 Neda Mahvash Mohammadi Ardeshir Hezarkhani Abbas Maghsoudi 《Acta Geochimica》 EI CAS CSCD 2018年第1期102-112,共11页
Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have ... Grade estimation is an important phase of mining projects, and one that is considered a challenge due in part to the structural complexities in mineral ore deposits.To overcome this challenge, various techniques have been used in the past. This paper introduces an approach for estimating Au ore grades within a mining deposit using k-means and principal component analysis(PCA). The Khooni district was selected as the case study. This region is interesting geologically, in part because it is considered an important gold source. The study area is situated approximately 60km northeast of the Anarak city and 270km from Esfahan. Through PCA, we sought to understand the relationship between the elements of gold,arsenic, and antimony. Then, by clustering, the behavior of these elements was investigated. One of the most famous and efficient clustering methods is k-means, based on minimizing the total Euclidean distance from each class center. Using the combined results and characteristics of the cluster centers, the gold grade was determined with a correlation coefficient of 91%. An estimation equation for gold grade was derived based on four parameters: arsenic and antimony content, and length and width of the sampling points. The results demonstrate that this approach is faster and more accurate than existing methodologies for ore grade estimation. 展开更多
关键词 k-means method CLUSTERING Principal component analysis(PCA) ESTIMATION GOLD Khooni district
下载PDF
Enriched reproducing kernel particle method for fractional advection–diffusion equation 被引量:1
18
作者 Yuping Ying Yanping Lian +1 位作者 Shaoqiang Tang Wing Kam Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第3期515-527,共13页
The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modele... The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advectiondiffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach. 展开更多
关键词 Meshfree method Fractional calulus Enriched reproducing kernel Advection-diffusion equation Fractional-order basis
下载PDF
A deep kernel method for lithofacies identification using conventional well logs 被引量:2
19
作者 Shao-Qun Dong Zhao-Hui Zhong +5 位作者 Xue-Hui Cui Lian-Bo Zeng Xu Yang Jian-jun Liu Yan-Ming Sun jing-Ru Hao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1411-1428,共18页
How to fit a properly nonlinear classification model from conventional well logs to lithofacies is a key problem for machine learning methods.Kernel methods(e.g.,KFD,SVM,MSVM)are effective attempts to solve this issue... How to fit a properly nonlinear classification model from conventional well logs to lithofacies is a key problem for machine learning methods.Kernel methods(e.g.,KFD,SVM,MSVM)are effective attempts to solve this issue due to abilities of handling nonlinear features by kernel functions.Deep mining of log features indicating lithofacies still needs to be improved for kernel methods.Hence,this work employs deep neural networks to enhance the kernel principal component analysis(KPCA)method and proposes a deep kernel method(DKM)for lithofacies identification using well logs.DKM includes a feature extractor and a classifier.The feature extractor consists of a series of KPCA models arranged according to residual network structure.A gradient-free optimization method is introduced to automatically optimize parameters and structure in DKM,which can avoid complex tuning of parameters in models.To test the validation of the proposed DKM for lithofacies identification,an open-sourced dataset with seven con-ventional logs(GR,CAL,AC,DEN,CNL,LLD,and LLS)and lithofacies labels from the Daniudi Gas Field in China is used.There are eight lithofacies,namely clastic rocks(pebbly,coarse,medium,and fine sand-stone,siltstone,mudstone),coal,and carbonate rocks.The comparisons between DKM and three commonly used kernel methods(KFD,SVM,MSVM)show that(1)DKM(85.7%)outperforms SVM(77%),KFD(79.5%),and MSVM(82.8%)in accuracy of lithofacies identification;(2)DKM is about twice faster than the multi-kernel method(MSVM)with good accuracy.The blind well test in Well D13 indicates that compared with the other three methods DKM improves about 24%in accuracy,35%in precision,41%in recall,and 40%in F1 score,respectively.In general,DKM is an effective method for complex lithofacies identification.This work also discussed the optimal structure and classifier for DKM.Experimental re-sults show that(m_(1),m_(2),O)is the optimal model structure and linear svM is the optimal classifier.(m_(1),m_(2),O)means there are m KPCAs,and then m2 residual units.A workflow to determine an optimal classifier in DKM for lithofacies identification is proposed,too. 展开更多
关键词 Lithofacies identification Deepkernel method Well logs Residual unit kernel principal component analysis Gradient-free optimization
下载PDF
A Fast and Effective Multiple Kernel Clustering Method on Incomplete Data 被引量:1
20
作者 Lingyun Xiang Guohan Zhao +3 位作者 Qian Li Gwang-Jun Kim Osama Alfarraj Amr Tolba 《Computers, Materials & Continua》 SCIE EI 2021年第4期267-284,共18页
Multiple kernel clustering is an unsupervised data analysis method that has been used in various scenarios where data is easy to be collected but hard to be labeled.However,multiple kernel clustering for incomplete da... Multiple kernel clustering is an unsupervised data analysis method that has been used in various scenarios where data is easy to be collected but hard to be labeled.However,multiple kernel clustering for incomplete data is a critical yet challenging task.Although the existing absent multiple kernel clustering methods have achieved remarkable performance on this task,they may fail when data has a high value-missing rate,and they may easily fall into a local optimum.To address these problems,in this paper,we propose an absent multiple kernel clustering(AMKC)method on incomplete data.The AMKC method rst clusters the initialized incomplete data.Then,it constructs a new multiple-kernel-based data space,referred to as K-space,from multiple sources to learn kernel combination coefcients.Finally,it seamlessly integrates an incomplete-kernel-imputation objective,a multiple-kernel-learning objective,and a kernel-clustering objective in order to achieve absent multiple kernel clustering.The three stages in this process are carried out simultaneously until the convergence condition is met.Experiments on six datasets with various characteristics demonstrate that the kernel imputation and clustering performance of the proposed method is signicantly better than state-of-the-art competitors.Meanwhile,the proposed method gains fast convergence speed. 展开更多
关键词 Multiple kernel clustering absent-kernel imputation incomplete data kernel k-means clustering
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部